QPO	C: RF23MSC005 Reg. No		1	AY 23	
GIET UNIVERSITY, GUNUPUR – 765022					
M. Sc. (First Semester) Examinations, February – 2024					
22MTPC101 - Abstract Algebra					
(Mathematics)					
Time: 3 hrs Maximum: 70 Marks					
(The figures in the right hand margin indicate marks.) PART – A (2 x 10 = 20 Marks)					
Q. 1.	Answer ALL questions		Ι	Blooms Level	
a.	List all the elements of Z_{40} of order 10.		CO1 CO1	K2 K2	
b.	Create a subgroup from the set $G = \{1, -1, i, -i\}$.		CO1	K2 K2	
c.	Let G be the group of positive real numbers under multiplication and \overline{G} be the grou	p 01	001	112	
	all real number under addition. A mapping $\phi: G \to \overline{G}$ is defined by $\phi(x) = \log_{10} x$ for all $x \in G$. Then show that ϕ is a homomorphism.				
d.	$f: Z_8 \to Z_8$. How many isomorphism possible?		CO2	K1	
e.	Is the set {(1,1,0), (1,0,1), (0,1,1)}, a basis for V_3 ?		CO3	K2	
f.	What is Unique Factorization Domain?		CO3	K1	
g.	Define Einstein Criterion and justify your answer with example.		CO3	K1	
h.	Is the set of real numbers is a field? If not then justify your answer.		CO2	K1	
i.	What is the difference between algebraic number and algebraic extension? Give	e an	CO4	K2	
j.	example. What do you mean by extension field? Justify your answer with an example.		CO4	K2	
PART – B (1		(10 x 5 = 50 Marks)			
Answe	er ANY FIVE questions	Marks	CO#	Blooms Level	
2.	Let ϕ be a homomorphism of G onto \overline{G} with kernel K. Then $\frac{G}{K} \approx \overline{G}$.	10	CO1	K2	
3. a.	Show that $G = \{1,3,5,7\}$ is a group under multiplication modulo 8.	5	CO1	K2	
b.	How many elements of order 2 are present in $D_4 \times D_4$?	5	CO1	K2	
4.	Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then R is a field.	10	CO2	K2	
5. a.	Prove that normalizer of a in G , defined by $N(a)$ is a subgroup of G .	6	CO2	K2	
b.	The characteristic of an integral domain is either 0 or a prime number.	4	CO2	K2	
6. a.	If U and W are two subspaces of a vector space V, prove that U and $U + W = U$ iff $U \subset W$.	6	CO3	K2	
b.	Let V be any vector space. Then the set $\{v\}$ is L.D. iff $v = \vec{0}$.	4	CO3	K1	
7.a.	In an n -dimensional vector space V , any set of n L.I. vectors is a basis.	5	CO3	K2	
b.	If S is a non-empty subset of a vector space V. Prove that $[S]$, is the intersection of all subspaces of V containing S.	5	CO3	K2	
8.	Let $K F$ be any field extension. Then, $a \in K$ is algebraic over F if and only if $[F(a):F]$ is finite, i.e. $F(a)$ is a finite extension over F . Moreover $[F(a):F] = n$, when n is the degree of minimal polynomial of a over F .	10	CO4	K2	

--- End of Paper ---