QPC: RN20BTECH661

AR 20

Reg. No

Maximum: 70 Marks

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester - Regular) Examinations, November - 2023

BPCCV7020 - Transportation Engineering - II

(Civil)

Answer ALL Questions The figures in the right hand margin indicate marks. **PART – A: (Multiple Choice Questions)** $(1 \times 10 = 10 \text{ Marks})$ Q.1. Answer ALL questions [CO#] [PO#] CO₁ PO1 The standard dimensions of a wooden sleeper for M.G. railway track are (i) $2.74 \text{ m} \times 25 \text{ cm} \times 13 \text{ cm}$ (ii) $2.1 \text{ m} \times 25 \text{ cm} \times 13 \text{ cm}$ (iii) $1.52 \text{ m} \times 15 \text{ cm} \times 10 \text{ cm}$ (iv) $1.75 \text{ m} \times 20 \text{ cm} \times 12 \text{ cm}$ CO1 PO1 Ballast packed below and around the sleepers to transfer the load from sleepers to formation, generally consists of (i) Broken stones (ii) Gravels (iii) Moorum (iv) All the above CO2 PO₁ c. The raising of outer rail over inner rail is called (i) cant deficiency (iii) capacity of the track (iv) centre bound sleepers d. No of keys used in CST-9 sleepers is CO₂ PO₂ (i) 1 (ii) 2 (iii) **4** (iv) 3 CO₃ PO₁ Two important constituents in the composition of steel used for rail are (i) Carbon and silicon (ii) Manganese and phosphorous (iii) Carbon and manganese (iv) Carbon and sulphur CO₃ PO₁ f. For laying the railway track, materials required are (i)) Rails (ii) Fish-Plates (iii) Fish Bolts (iv) Bearing Plates CO4 PO3 The runway orientation is made so that landing and take-off are (i) against the wind direction (ii) along the wind direction (iii) perpendicular to the wind direction (iv)none of these CO₄ PO₂ h. Two single runways may be arranged so as to have (ii) X SHAPE (i) L shape (iii) T shape (iv) all of these CO1 PO₁ i. Composite sleeper index is the index of (i) Hardness and strength (ii) Strength and toughness (iii) Toughness and wear resistance (iv) Wear resistance and hardness CO₂ PO₁ j. Normally the limiting value of cant is (where G is the gauge) (i) G/8(ii) G/10 (iii) G/12 (iv) G/15

PART – B: (Short Answer Questions)		$(2 \times 10 =$	$2 \times 10 = 20 \text{ Marks}$		
Q.2.	Answer ALL questions	[(CO#]	[PO#]	
a.	What is ballast? Name different types of ballast.		CO1	PO2	
	Write about ill effects of creep.		CO1	PO2	
	Write any three objectives of signaling.	(CO2	PO1	
	Define (i) Gradient (ii) Ruling gradient.	(CO2	PO2	
	What are sighting boards? Where to position them?	(CO3	PO2	
	What is the grade compensation?	(CO3	PO2	
	What is wind rose diagram?	(CO4	PO2	
	State and explain briefly the limitations of airport.	(CO4	PO1	
	What are different types of rail sections used in Indian railways?		CO1	PO2	
	What are station yards? Name various types of station yards.	(CO2	PO2	
PAR	PART – C: (Long Answer Questions)		(10 x 4 = 40 Marks)		
Ans	wer ALL questions	Marks	[CO#]	[PO#]	
3. a	What do you mean by rail and describe various types of rails with neat sketches?	2 5	CO1	PO2	
b	• • • • • • • • • • • • • • • • • • • •	5	CO1	PO1	
	(OR)	Č			
C		5	CO1	PO2	
d			CO1	PO1	
	sketches.	, ,			
4. a		5	CO2	PO2	
b			CO2	PO2	
	various components.	,			
(OR)					
C	Define gradient in railway track and state the various classifications in gradients	s 5	CO2	PO2	
	in railway track.				
d	Explain the working of semaphore signal in detail with sketch.	5	CO2	PO1	
5. a	What is super elevation and its function?	5	CO3	PO1	
b	What is orientation of run way? Explain briefly.	5	CO3	PO1	
	(OR)				
C	What is coning of wheels explain with neat sketch? Write its advantages.	5	CO3	PO1	
d	State the objectives of signalling. Allowing a cant deficiency of 7.5 cms.	5	CO3	PO1	
	What super elevation should be provided on a 2-degree curve in BG track				
	corresponding to speed of 100 Kmph.				
6. a	What are the different drawings and maps that should be prepared for the finally	5	CO4	PO1	
	selected site for developing an airport?				
b	Distinguish between airport markings and airport lightings. (OR)	5	CO4	PO2	
C		5	CO4	PO1	
	has elevation of 270 m. its reference temperature is 32.9 degree Celsius. if the				
	runway is to be constructed into an effective gradient 0.20 percent. Determine the				
	correct runway length.				
d		. 5	CO4	PO2	