AR 20

GIET UNIVERSITY, GUNUPUR – 765022

Time: 3 hrs

B. Tech (Seventh Semester - Regular) Examinations, November - 2023

BPECS7011 – Statistical Machine Learning

(CSE)

Maximum: 70 Marks

Answer ALL Questions								
The figures in the right hand margin indicate marks.								
PART – A: (Multiple Choice Questions) (1 x 10 = 10 Marks)								
Q.1. Answer ALL questions			[CO#]	[PO#]				
a.	Logistic regression is a regression	ssion technique that is used to model data having	CO1	PO3				
	a outcome							
	(i) Linear, Binary	(ii) Linear, numeric						
	(iii) Non-linear, binary	(iv) Non-linear ,numeric						
b. What machine learning models are trained to make a series of decisions on based on the rewards and feedback they receive for their actions?			CO1	PO2				
	(i) Supervised	(ii) Unsupervised						
	(iii) Reinforcement	(iv) All the above						
c.	What is the purpose of ridge regression in mac	hine learning?	CO2	PO2				
	(i) To handle multicollinearity in the dataset.	(ii) To reduce the sum of squared residuals.						
	(iii) To perform feature selection.	(iv) To handle missing values in the dataset.						
d.	Which assumption is commonly made in linear	r regression modeling?	CO1	PO2				
	(i) The dependent variable is normally	(ii) The dependent variable is categorical in						
	distributed.	nature.						
	(iii) The residuals have a constant variance.	(iv) The independent variables are strongly correlated with each other.						
e.	What is the key assumption made by the Naive	Bayes algorithm?	CO3	PO3				
	(i) Independence of features	(ii) High dimensionality						
	(iii) Non-parametric nature	(iv) Deterministic outcomes						
f.	In K-nearest neighbors (KNN) algorithm, how	is the majority voting performed?	CO3	PO2				
	(i) Each neighbor has an equal vote.	(ii) Closer neighbors have higher weights.						
	(iii) Each neighbor votes based on its	(iv) The neighbor with the highest probability						
	distance.	votes.						
g. In Artificial Neural Networks (ANN), what is the purpose of the activation function?								
	(i)) Feature extraction	(ii) Non-linearity introduction						
	(iii) Dimensionality reduction	(iv) Weight initialization						
h.	In SVM, what is the role of support vectors in	the decision boundary?	CO4	PO2				
	(i) Determine the weights of the features	(ii) Define the margin and decision boundary						
	(iii) Act as outliers to be ignored	(iv) Influence the regularization parameter						
i.	What is the purpose of support vector machine	s (SVM)?	CO4	PO2				
	(i) To maximize the margin between	(ii) To minimize the training error in						
	different classes.	classification.						
	(iii) To handle imbalanced datasets.	(iv) To perform feature selection.						
j.	In Bayes' theorem, what does P(A B) represent		CO3	PO2				
	(i) Joint probability of A and B	(ii) Conditional probability of A given B						
	(iii) Marginal probability of A	(iv) Prior probability of A						

Page 2 of 3

Total

650

400

150

1200

	of each.					
b.	Discuss the bias-variance trade-off in machine learning. How does it impact model	5	CO1			
	performance?					
(OR)						
c.	Explain the concepts of underfitting and overfitting in machine learning. How can these issues be addressed?	5	CO1			
d.	Explain the steps involved in developing and deploying a machine learning model.	5	CO1			
	Discuss the significance of each step in the model development lifecycle.					
4. a.	Compare and contrast logistic regression and random forest models for classification tasks.	5	CO2			
b.	Explain the variable importance plot in random forest models. Discuss how it helps	5	CO2			
	identify the most influential features and how it can be used for feature selection. Provide	U				
	an example of creating and interpreting a variable importance plot using a real-world					
	dataset.					
	(OR)					
c.	Compare and contrast the interpretability of logistic regression and random forest	5	CO2			
	models. Discuss the trade-offs between the two models in terms of ease of interpretation					

and understanding the impact of features on the outcome. Support your answer with

Consider the given dataset. Apply the Naïve Bayes algorithm and predict that if the fruit

Long

0

350

50

400

Machine.

What is the objective of dimensionality reduction techniques?

How does ridge regression differ from ordinary least squares regression?

Explain the concept of hyper parameters in machine learning algorithms.

How do logistic regression and random forest differ in terms of interpretability?

Discuss the importance of data cleaning and pre-processing in machine learning.

3. a. Compare and contrast supervised learning and unsupervised learning. Provide examples

How does the KNN algorithm work in a classification task? Provide a brief overview

CO3 PO2 Explain the concept of joint probability and provide an example. h. CO4 PO1 i. Describe the difference between the Support Vector Classifier and the Support Vector CO4 PO1 j. How does deep learning software facilitate the development and deployment of complex

neural network architectures?

PART – C: (Long Answer Questions)

examples and real-world applications.

Yellow

350

400

50

800

has the following properties then which type of fruit it is?

Sweet

450

300

100

850

Answer ALL questions

d.

Fruit

Mango Banana

Others

Total

Explain the concept of overfitting in machine learning. a.

Q.2. Answer ALL questions

b.

c.

d.

e.

f.

g.

PART – B: (Short Answer Questions)

 $(2 \times 10 = 20 \text{ Marks})$

[CO#]

CO1

CO1

CO2

CO₂

CO1

CO1

CO3

[PO#]

PO₂

PO1

PO1

PO1

PO2

PO₂

PO2

(10 x 4 = 40 Marks)

[CO#]

CO1

[PO#]

PO3

PO2

PO2

PO₂

PO3

PO3

PO3

PO3

Marks

5

5

CO2

5. a.			CO3	PO1
b.	it impact the performance of machine learning algorithms? Discuss the significance of joint probability in understanding the relationships between variables. Provide real-world examples.	5	CO3	PO1
	(OR)			
c.	Discuss the challenges and limitations of using Naive Bayes for SMS spam classification, and propose potential solutions.	5	CO3	PO1
d.	Given a confusion matrix for a Naive Bayes SMS spam classifier with 150 true positives, 20 false positives, 30 false negatives, and 800 true negatives, calculate precision, recall, and F1 score.	5	CO3	PO2
6. a.	Perform a forward propagation for a simple artificial neural network with one input layer, one hidden layer with three neurons, and one output layer. Assume the activation function is sigmoid, and the input values are (0.5, 0.8, 0.2). Calculate the output of the neural network.	5	CO4	PO2
b.	Explain the concept of stochastic gradient descent (SGD) and its role in optimizing neural networks.	5	CO4	PO1
	(OR)			
c.	Discuss the impact of hyper parameter tuning on the performance of deep neural networks. Include specific examples of hyper parameters and their influence on model outcomes.	5	CO4	PO2
d.	Describe the working principles of artificial neural networks (ANN). Explain the concepts of forward propagation and backpropagation in the training process of neural networks. Discuss the optimization techniques used for training neural networks.	5	CO4	PO2

--- End of Paper ---