AR 20

Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester – Regular) Examinations, November – 2023 BOECS7011 / BOECT7011 - Soft Computing

(CSE,CST)

Maximum: 70 Marks

1 1111			WittAm		, ium ing
Answer ALL Questions					
The figures in the right hand margin indicate marks.					
PAI	RT – A: (Multiple Choice Questions)		(1 x 1	$10 = 10 \mathrm{M}$	larks)
Q.1. Answer ALL questions			[CO#]	[PO#]	
a.	The process of converting a crisp value int	to a fuz:	zy value is called	CO1	PO1
	(i) Fuzzification.	(ii)	Defuzzyfication		
	(iii) Optimization	(iv)	Linearization		
b.	A fuzzy pair contains			CO1	PO1
	(i) Member, Membership value	(ii)	Two members		
	(iii) Two membership values	(iv)	None		
c.	The truth values of traditional set theor	y is	and that of fuzzy set is	CO1	PO1
	(i) Either 0 or 1, between 0 & 1	(ii)	Between 0 & 1, either 0 or 1		
	(iii) Between $0 \& 1$, between $0 \& 1$		Either 0 or 1, either 0 or 1		
d.	A fuzzy set whose membership function h	as at lea	ast one element x in the universe whose	CO1	PO1
	membership value is unity is called				
	(i) Sub-normal fuzzy sets	(ii)	Normal fuzzy set		
	(iii) Convex fuzzy set	(iv)	Concave fuzzy set		
e.	The process of adjusting the weight is kno	· · /	,	CO3	PO1
	(i) activation	(ii)	learning		
	(iii) synchronization	(iv)	none		
f.	A 4-input neuron has weights 1, 2, 3 and 4.	· · /		CO3	PO2
	of proportionality being equal to 2. The inp				
	will be:		, , , , , , , , , , , , , , , , , , ,		
	(i) 238	(ii)	76		
	(ii) <u>119</u>	(iv)	223		
g.	LVQ is a powerful method for classifying	· · /		CO3	PO1
8	(i) Linearly	(ii)	Non-linearly		
	(iii) Both Linearly & Non-linearly	· · /	none		
h.	In GA, the strategy to ensure that the best			CO4	PO1
	through generations is	emonio	somes are not lost in the search process		
	(i) Elitism	(ii)	Tabu search		
	(ii) Selection	(iv)	Convergence		
i.	Uncertainty can be represented by	(1)	Convergence	CO1	PO1
	(i) Entropy	(ii)	Fuzzy logic		
	(iii) Probability	(iv)	All of the above		
i	•	· · /		CO2	PO2
J.	j. If A and B are two fuzzy sets with membership functions $\mu A(x) = \{0.6, 0.5, 0.1, 0.7, 0.8\} \mu B(x) = \{0.9, 0.2, 0.6, 0.8, 0.5\}$, Then the value of $\mu(A \cup B)(x)$ will be				1.02
	(i) $\{0.9, 0.5, 0.6, 0.8, 0.8\}$		$\{0.6, 0.2, 0.1, 0.7, 0.5\}$		
	(ii) $\{0.1, 0.5, 0.4, 0.2, 0.2\}$	` ´	$\{0.1, 0.5, 0.4, 0.2, 0.3\}$		
	(, (,,,)	(**)	(,,,,)		

	AT D. (Short Answer Questions)	$(\mathbf{Z} \mathbf{X} \mathbf{I} 0 - \mathbf{Z} 0 \mathbf{I})$	Iul K 5)
<u>Q.2</u>	2. Answer ALL questions	[CO#]	[PO#]
a.	What is the membership function in Fuzzy Logic System?	CO1	PO1
b.	Explain the core, support, and boundary of a fuzzy set.	CO1	PO1
c.	What are the applications of fuzzy logic?	CO1	PO1
d.	State the fuzzy rule base in the Sugeno Fuzzy Inference System.	CO1	PO2
e.	Find α -cut of the set.(α =0.5) Å={0.1/a, 0.6/b, 0.4/c, 0.8/d, 0.5/e}.	CO2	PO2
f.	What is radial basis function in neural network?	CO3	PO1
g.	What is Activation Function and write its importance.	CO3	PO1
h.	What is the output of a>>2 operation if a=1010 0110?	CO4	PO2
i.	What do you mean the term population in Genetic algorithm?	CO4	PO1
j.	State commutative and associative laws in fuzzy sets.	CO2	PO1

 $(2 \times 10 = 20 \text{ Marks})$

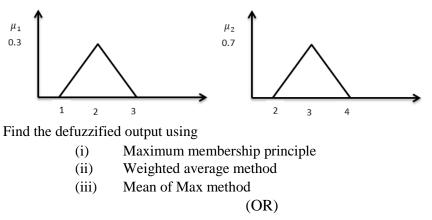
(10 x 4 = 40 Marks)

Marks [CO#] [PO#]

PART – C: (Long Answer Questions)

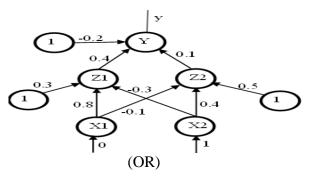
PART – B: (Short Answer Ouestions)

Answer ALL	questions
	-


3. a.	Consider two fuzzy sets $A = \left\{ \frac{0.3}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$ and $B = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4} \right\}$	5	CO2	PO3
	Find the bounded sum and bounded difference of the given fuzzy sets.			
b.	What is membership function in Fuzzy Logic System? State and draw various	5	CO2	PO2

- membership functions. (OR)
 - c. Two fuzzy relations R1 and R2 are given in the following two tables 5 CO2 PO3

$$R_{1} = \frac{y_{1} \quad y_{2} \quad y_{3}}{x_{1} \mid 0.1 \quad 0.3 \quad 0.4} \qquad R_{2} = \frac{y_{1} \quad y_{2}}{x_{1} \mid 0.5 \quad 0.2} \\ x_{2} \mid 0.2 \quad 0.1 \quad 0.5 \qquad \qquad x_{2} \mid 0.7 \quad 0.1 \\ x_{3} \mid 0.2 \quad 0.6 \end{cases}$$


Find MAX-MIN composition (ii) MAX-PROD composition.

d.	Explain the different types of membership function used in fuzzification process?	5	CO2	PO2
4. a.	Two fuzzy membership functions are represented by:	10	CO2	PO4

b.What is Defuzzification process in FIS?3CO2PO2c.Explain Mamdani and Suzzeno fuzzy FIS with example.7CO2PO2

5. a. Using back-propagation algorithm find the new weights for the net shown. It is 10 CO3 PO4 represented with the input pattern [0 1] and the target output is 1. Use a learning rate α is equal to 0.25, and binary sigmoidal activation function.

- b. Construct the Kohonen's Self Organizing Map (KSOM) to cluster the 4-given 8 CO3 PO4 vectors [1 0 0], [1 1 0], [0 0 1] and [0 1 1]. The number of clusters to be formed are two. Assume initial learning rate 0.2.
 c. What is the role of the Learning coefficient and momentum factor in Back- 2 CO3 PO1
- propagation algorithm? 6. a. Write the step by step implementation procedure for GA. 10 CO4 PO3

(OR)

b. What is the significance of hybrid system in soft computing? Explain Neuro 10 CO4 PO3 Fuzzy Hybrid systems with advantages and disadvantages.

--- End of Paper ---