AR 20 Reg. No

QPC: RN20BTECH697

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester – Regular) Examinations, November – 2023 BOEEL7011/BOEEE7011 – Neural Networks & Fuzzy Logic

(EE & EEE)

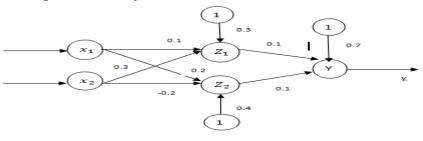
Time: 3 hrs Maximum: 70 Marks

11m	e: 3 nrs		1	Maximum: 70	Marks					
	A	Answer ALI	L Questions							
The figures in the right hand margin indicate marks.										
PAl	RT – A: (Multiple Choice Questions)	J		$(1 \times 10 = 10)$	Marks)					
	,			`	,					
0.1	. Answer ALL questions			[CO#]	[PO#]					
a.	Which of following is not a fuzzy men	nbership fu	nction?	CO1	PO1					
	(i) Gaussian	(ii)	Increasing							
	(iii) Signum	(iv)	Decreasing							
b.	Which of the following is associated w	` /	•	CO1	PO1					
	(i) Crisp set logic	-	Many-valued logic							
	(iii) Two-valued logic	(iv)	Binary set logic							
c.	Fuzzy Set theory defines fuzzy operator	` ′	•	v set CO1	PO1					
C.	theory?	ors. willen	ruzzy operator represents in ruzzy	y set						
	(i) AND	(ii)	OR							
	(iii) NOT	(iv)	All of the above							
d.	If A and B are two fuzzy sets with men	` ′		CO2	PO2					
u.	$0.7,0.8$ } μ B(x) = {0.9, 0.2, 0.6, 0.8, 0.5}			202	102					
			$\{0.6, 0.2, 0.1, 0.7, 0.5\}$							
	(i) {0.9, 0.5, 0.6, 0.8, 0.8}	, ,								
0	(iii) {0.1, 0.5, 0.4, 0.2, 0.2}	(iv)	{0.1, 0.5, 0.4, 0.2, 0.3}	CO3	PO1					
e.	Which of the following neural network	_	=	203	101					
	(i) Multilayer-perceptron	(ii)	Self-organizing-feature-map							
c	(iii) Hopfield network	(iv)	none	CO2	PO1					
f.	The network in which the output of a r			CO3	POI					
	(i) Recurrent network	(ii)	Back propagation network							
	(iii) Reinforcement	(iv)	Reverse network	002	DO1					
g.	Artificial neural network used for			CO2	PO1					
	(i) Pattern Recognition	(ii)	Classification							
	(iii) Clustering	(iv)	All of these	904	201					
h.	The amount of output of one unit recei	-	-	CO1	PO1					
	(i) Output unit	(ii)	Input unit							
	(iii) activation value	(iv)	weight							
i.	Uncertainty can be represented by			CO1	PO1					
	(i) Entropy	(ii)	Fuzzy logic							
	(iii) Probability	(iv)	All of the above							
j.	Which of the following neural network	-	_	CO2	PO1					
	(i) Multilayer perceptron	(ii)	Self organizing feature map							
	(iii) Hopfield network	(iv)	None of these							
PAl	RT – B: (Short Answer Questions)			$(2 \times 10 = 20 \text{ N})$	Marks)					
<u>Q.2</u>	2. Answer ALL questions			[CO#]	[PO#]					
a.	What is the membership function in Fu		<u> •</u>	CO1	PO1					
b.	Explain the core, support, and boundar	•	=	CO1	PO1					
c.	How is centroid method helpful in def	uzzification	1?	CO2	PO2					
d.	Find α -cut of the set.(α =0.5)			CO2	PO2					
	\dot{A} ={0.1/a, 0.6/b, 0.4/c, 0.8/d, 0.5/e}									
e.	Draw the single-layer recurrent network		i-layer recurrent network.	CO3	PO2					
f.	What is the role of bias in neural netwo	orks?		CO3	PO1					

g.	Define binary and bipolar sigmoid activation function.	CO1	PO1
h.	Define perceptron learning rule.	CO4	PO1
i.	What are the applications of fuzzy logic?	CO1	PO1
j.	Mention one advantages and disadvantage of fuzzy logic controllers.	CO2	PO1

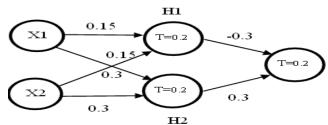
PART – C: (Long Answer Questions)

 $(10 \times 4 = 40 \text{ Marks})$


Answer ALL questions		Marks	[CO#]	[PO#]
3. a.	What is membership function in Fuzzy Logic System? State and draw various	5	CO2	PO2
	membership functions.			
b.	Two fuzzy sets are given as $\frac{x_1}{A 0.1} \frac{x_2}{0.2} \frac{x_3}{0.3} \frac{x_4}{0.6} \frac{x_4}{0.5}$	5	CO1	PO3
	A = 0.1 0.2 0.3 0.6 0 $B = 0.3 0.4 0.5 0.7 0.8$			
	Find (i) $(A \cap B)_{0.6}$ (ii) $(B \cup \overline{A})_{0.6}$			
	(OR)			
c.	Two fuzzy relations R1 and R2 are given in the following two tables	5	CO2	PO3
	$R_{1} = \frac{y_{1}}{x_{1}} \begin{vmatrix} y_{2} & y_{3} \\ 0.1 & 0.3 & 0.4 \\ x_{2} \end{vmatrix} 0.2 0.1 0.5$ $R_{2} = \frac{y_{1}}{x_{1}} \frac{y_{2}}{0.5 0.2}$ $x_{2} \begin{vmatrix} 0.7 & 0.1 \\ x_{3} \end{vmatrix} 0.2 0.6$			
	$x_3 0.2 = 0.6$			

Find MAX-MIN composition (ii) MAX-PROD composition.

- d. Explain the different types of membership function used in fuzzification process.


 5 CO2 PO2

 4. a. Consider two fuzzy sets $A = \left\{ \frac{0.3}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$ and $B = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4} \right\}$ Find the bounded sum and bounded difference of the given fuzzy sets.
 - b. Explain Mamdani and Suzzeno fuzzy FIS with example. 5 CO2 PO2 (OR)
 - c. Explain with suitable membership function and rule base of the fuzzy inference system 10 CO2 PO3 for Automatic Washing Machine.
- 5. a. Using Back Propagation Algorithm, train the following network with a target of 1 and 10 CO3 PO4 learning rate 0.2 for inputs of 0 and 1.

(OR)

b. Draw a table of input and output for the network and identify the logic gate 10 CO3 PO4

6. a. Consider the initial weight matrix $w = [1 - 1 \ 0 \ 0.5]^T$, the learning rate =1, training set having the input patterns are $X1 = [1 - 2 \ 1.5 \ 0]^T$ $X2 = [1 - 0.5 - 2 - 1.5]^T$ $X3 = [0 \ 1 - 1 \ 1.5]^T$. It has bipolar signum neurons. Perform two iterations of training using Hebbian's Learning Rule.

(OR)

b. Design a bipolar AND gate function using perceptron network. 10 CO2 PO4