AR 20

Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester – Regular) Examinations, November – 2023

BPEEC7027 - Machine Learning

(ECE)

Maximum: 70 Marks

Answer ALL Questions								
The figures in the right hand margin indicate marks.								
PART – A: (Multiple Choice Questions) (1 x 10 = 10 Marks)								
<u>Q.1</u>	[CO#] CO2	[PO#]						
a.	Supervised learning and unsupervised clustering both require at least one			PO3				
	(i) hidden attribute	(ii) output attribute						
	(iii) input attribute	(iv) categorical attribute						
b.	Classification problems are distinguished	from estimation problems in that	CO2	PO1				
	(i) classification problems require the output attribute to be numeric	(ii) classification problems require the output attribute to be categorical						
	(iii) classification problems do not allow an output attribute	(iv) classification problems are designed to predict future outcome						
c.	Which statement is true about neural netwo	ork and linear regression models?	CO2	PO3				
	(i) Both models require input attributes to be numeric	(ii) Both models require numeric attributes to range between 0 and 1						
	(iii) The output of both models is a categorical attribute value	(iv) Both techniques build models whose output is determined by a linear sum of weighted input attribute values						
d.	Simple regression assumes aand output attribute.	_ relationship between the input attribute	CO2	PO1				
	(i) Linear	(ii) Quadratic						
	(iii) reciprocal	(iv) inverse						
e.	The most widely used metrics and tools to	assess a classification model are	CO3	PO1				
	(i) Confusion matrix	(ii) Cost-sensitive accuracy						
	(iii) Area under the ROC curve	(iv) All of the above						
f.	What is/are true about kernel in SVM?							
	1. Kernel function map low dimensional d							
	2. It's a similarity function							
	(i) 1	(ii) 2						
	(iii) 1 and 2	(iv) None of these						
g.	Which of the following is/are Common us	CO4	PO3					
	(i) Businesses Help securities traders to generate analytic reports	(ii) Detect fraudulent credit-card transaction						
	(iii) Provide a caption for images	(iv) All of the above						
h.	An artificial neuron receives n inputs x1, wn attached to the input links. The computed to be passed on to a non-linear release the output.	CO4	PO4					
	(i) Σ wi	(ii) Σx_i						
	(iii) $\Sigma w_i + \Sigma x_i$	$(iv) \Sigma wi^* xi$						

•				CO1	PO1		
i.	C				101		
	(i) All data is unlabelled and the algorithms learn to inherent structure algorithms learn to predict the output						
	from the input data	from the input data					
	(iii) It is a framework for learning	(iv) Some data is labelled but most					
	where an agent interacts with an	of it is unlabelled and a mixture of					
	environment and receives a reward for	supervised and unsupervised techniques					
	each interaction						
j.	Machine Intelligence means	(CO2	PO1			
	(i) Putting your intelligence into Computer	(ii) Programming with your own intelligence					
	(iii) Making a Machine intelligent	(iv) Putting more memory into Computer	ſ				
PAR'	Г – В: (Short Answer Questions)	(2)	x 10 =	= 20 M	arks)		
0.2.	Answer ALL questions		[·	CO#]	[PO#]		
	What is K-fold Cross Validation?		-	CO1	PO2		
	Let the random variable X takes values -2, -1, 1, 3 with probabilities 1/4, 1/8, 1/4, 3/8 respectively. What is the expected of the random variable $Y = X^2$?			CO2	PO3		
	What are the differences between Decision Tree and KNN classifier.				PO2		
d .]	Mention few applications of linear algebra in aspect of machine learning.				PO3		
	How is a decision tree pruned?				PO3		
f.]	Define entropy and information gain.		CO3	PO3			
g.	What do You Understand by Back propagation		CO4	PO2			
h . 1	RNN are well suited for text summarization. Ju		CO4	PO3			
i. `	What is the significance of Confusion Matrix?			CO1	PO2		
j .]	j. Differentiate between insufficient data and non-representative data.			CO2	PO2		
PART – C: (Long Answer Questions) (10 x 4					= 40 Marks)		
Ansv	ver ALL questions	,	Marks	[CO#] [PO#]		
3. a.	3. a. Explain briefly the need of machine learning. 5				PO1		
b.					PO2		
	b. Discuss briefly the different types of machine learning with suitable examples. 5 CO1 PO2 (OR)						
c.	c. List out the different challenges associated with machine learning.				PO1		
d.					PO2		
d. Describe briefly the different steps of machine learning.5CO1PO2							
4. a.	Instance C	assification a ₁ a ₂	5	CO2	PO2		
	Instance Cl	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
	2	+ T T					
	3	- T F					
	4 5	+ F F - F T					
	6	- F I - F T					
What is the entropy of this collection of training examples with respect to the target							
	function classification? What is the information gain of a_1 and a_2 relative to these training examples? Draw the decision tree of the given dataset.						
b.	Write a brief note on different types of feature	res encountered in machine learning.	5	CO2	PO1		
(OR)							
	(0)	,					

c. Describe collaborative filtering and how it's used in recommendation systems. 5 CO2

PO1

d. For the given data, if a new test instance appears i.e., (6,5), obtain its class using Nearest 5 CO3 PO1 Centroid Classifier.

X	3	5	4	7	б	8
Y	1	2	3	6	7	5
Class	Α	Α	Α	В	В	В

5. a.	Explain the difference between KNN and K-means Clustering.		CO3	PO1
b.	Briefly describe the different parts of a Decision tree.	5	CO3	PO2
	(OR)			
c.	Explain the KNN algorithm with an example.	5	CO3	PO1
d.	What is SVM in machine learning? What are the classification methods that SVM can handle?	5	CO3	PO2
б. а.	Explain the LeNet architecture.	5	CO4	PO2
b.	What Are the Different Layers on CNN?	5	CO4	PO1
	(OR)			
c.	Differentiate between c-means clustering and k-means clustering.	5	CO4	PO2
d.	Explain VGG16 architecture.	5	CO4	PO1

--- End of Paper ---