QP Code:	RM21BTECH521
----------	--------------

QP Cod	le: RM21BTECH521 Reg. No			AY 21
	GIET UNIVERSITY, GUNUPUR – 7 B. Tech (Sixth Semester Regular) Examinations, 21BBTOE36001 – Optimization Engin	, May -		
exc	(Chemical/Biotech)		Ð	
Tir		laximun	n: 70 M	arks
	(The figures in the right hand margin indicate marks)			
PA	RT – A	(2 x 5 =	= 10 Ma	arks)
-	Answer ALL questions		CO #	Blooms Level
	Vrite the mathematical formulation of LPP.		CO1 CO4	K1 K1
	Vrite Kuhn-Tucker's condition. Vrite the advantages of dual simplex method on simplex method.		C04	K1 K1
	lentify what type of IPP is it.		CO3	K2
	$\operatorname{Iax} Z = 3X_1 + 4X_2$			
S	ubject to: $5X_1 + 4X_2 \le 200$			
o W	$3X_1+5X_2 \le 150$ Where $X_1, X_2 \ge 0$ and X_2 = Integer.		CO3	K2
e. v	/rite different type of customer's behavior.		005	K2
PAR'	$\Gamma - B$	(15 x 4	l = 60 N	(larks)
Answe	er ALL questions	Marks	CO #	Blooms Level
2. a.	Solve the following LPP using simplex method. $Max Z = X_1+2X_2+X_3$	10	CO1	3
	Subject to: $2X_1+X_2-X_3 \ge -2$			
	$-2X_1+X_2-5X_3 \le 6$			
	$4X_1 + X_2 + X_3 \le 6$ Where $X_1, X_2, X_3 \ge 0$			_
b.	A company produces two different products A &B and makes a profit of	5	CO1	2
	Rs.40 and Rs.30 per unit, respectively. The production process has a capacity of 30,000 man hours. It takes 3hours to produce one unit of A and one hour to			
	produce one unit of B. The market survey indicates that the maximum number			
	of units of product A that can be sold is 8000 and those of B is 12,000.			
	Formulate the problem statement in order to maximize the profit and meet the			
	requirements?			
	(OR)	10	CO1	2
c.	Solve the following LPP using simplex method. Min $Z = 4X_1+X_2$	10	CO1	3
	Subject to: $3X_1+X_2=3$			
	$4X_1 + 3X_2 \ge 6$			
	$X_1+2X_2 \leq 4$ Where $X_1, X_2 \geq 0$			
d.	Solve the following LPP using graphical method.	5	CO1	3
	$Max Z = 3X_1 + 4X_2$			
	Subject to: $5X_1+4X_2 \le 200$ $3X_1+5X_2 \le 150$			
	$5X_1+5X_2 \le 150$ $5X_1+4X_2 \ge 100$			
	$8X_1 + 4X_2 \ge 80$ Where $X_1, X_2 \ge 0$			
3.a.	Solve the following transportation problem to maximize the profit using MODI	15	CO3	2
	method.			

Source / Destination	А	В	С	D	Supply
1	15	51	42	33	23
2	80	42	26	81	44

3	90	40	66	60	33
Demand	23	31	16	30	
(OR)					

CO2 3 b. Solve the following Integer Programming Problem using branch and bound 15 technique.

Max $Z = 2X_1 + 2X_2$ Subject to: $5X_1+3X_2 \leq 8$ $X_1 + 2X_2 \le 4$

 X_1 and $X_2 \ge 0$ and are integers.

CO3

7

2

4.a. Solve the following assignment problem assuming job C cannot be assigned to CO3 2 8 machine 6.

	Machine							
		1	2	3	4	5	6	
	А	11	17	8	16	20	15	
Job	В	9	7	12	6	15	13	
JC	С	13	16	15	12	16	8	
	D	21	24	17	28	2	15	
	Е	14	10	12	11	15	6	

b. Find the initial solution of the transportation problem using VAM method.

		1	1	0	
Source / Destination	А	В	С	D	Supply
1	4	6	8	13	50
2	13	11	10	8	70
3	14	4	10	13	30
4	9	11	13	8	50
Demand	25	35	105	20	
	(0	DR)			

N)

c.	Solve the following LPP using two phase method.	8	CO1	3
	Max $Z = 5X_1 - 2X_2 + 3X_3$			
	Subject to: $2X_1+2X_2-X_3 \ge 2$			
	$X_1-4X_3 \le 3$			
	$X_2 + 3X_3 \le 5$			
	Where $X_1, X_2, X_3 \ge 0$			
d.	Solve the following LPP using dual simplex method.	7	CO2	3
	$Max \ Z = 3X_1 + 17X_2 + 9X_3$			
	Subject to: $X_1 - X_2 + X_3 \ge 3$			
	$-3X_1+2X_3 \le 1$ Where $X_1, X_2, X_3 \ge 0$			
5.a.	Solve the following NLPP using Fibonacci search method.	10	CO4	3
	Max $Z = -3X^3 + 21.6X + 1$.			
	Value of X lies between 0 and 25 with a minimum resolution of 0.5 for 6			
	functional evaluation.			
b.	People arrive at a theatre ticket centre in a Poisson distributed arrival rate of 25	5	CO4	2
	per hour. Service time is at 2 minute. Calculate the expected number in the			
	waiting line, waiting time and utilization factor.			
	(OR)			
с.	Solve the following problems using Lagrange method.	10	CO4	3
	$Min Z = -2X_1^2 + 5X_1X_2 - 4X_2^2 + 18X_2$			
	Subject to: $X_1+X_2=7$, Where $X_1, X_2 \ge 0$			
d.	Patients arrive at a clinic at the rate of 30 patients per hour. The waiting room	5	CO4	2
	does not accommodate more than 14 patients. Examination time per patient is			
	mean rate of 20 per hour. Find the expected waiting time, waiting line and the			
	idle time of the clinic			

idle time of the clinic.

--- End of Paper ---