Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Sixth Semester Regular) Examinations, May – 2024

(ECE)

21BECOE36011 - Operating Systems

Reg.

No

Maximum: 70 Marks

(15 x 4 = 60 Marks)

(The figures in the right-hand margin indicate marks)							
]	$\mathbf{PART} - \mathbf{A} \tag{2 x 5} =$		10 Marks)				
Q.1. Answer ALL questions		CO #	Blooms				
			Level				
a.	Draw the diagram that can explain spooling.	CO1	K1				
b.	What is convoy effect?	CO2	K1				
c.	Briefly explain about many to one model in thread concept.	CO2	K1				
d.	If there are 400 tracks in a disk with the constant depending upon the disk drive is 0.00	04. CO4	K2				
	Find out Seek time if start up time is 0.6 ms.						
e.	Differentiate between Trashing and demand paging.	CO3	K1				

PART – B

CO # Marks Blooms Answer ALL questions Level CO1 K1 8 2. a. Explain about PCB. b. How process state transition happens? Explain in detail with process state 7 CO1 K1 diagram. (OR) c. Explain in detail with diagram about different types of operating systems CO1 K1 10 CO2 5 K1 d. Explain in detail about the (i) Process creation (step by step) (ii) Process termination.

3.a. The process with their burst time have been given in the table below. Apply 7 CO2 K3 both **SJF and FCFS Algorithm** and calculate average turnaround time, average waiting time and average first response time. Compare the performance.

Process	Burst Time(ms)
P1	15
P2	32
P3	4
P4	10
• .1 .1 • 1	1 1

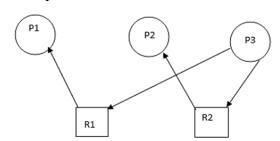
b. The process with their burst time has been given in the table below. Apply 8 CO2 K3 **Shortest Time Remaining First Algorithm** and calculate average turnaround time, average waiting time and average first response time.

Process	Arrival Time (ms)	Burst Time(ms)
P1	0	5
P2	1	3
P3	2	4
P4	4	1

Page 1 of 2

	(OR)			
c.	Provide the concept in detail about the two-process solution for critical	8	CO3	K2
	section problem.			
d.	Explain about critical section and the conditions for the critical section.	7	CO3	K2
4.a.	Explain about Bankers algorithm with proper example.	10	CO3	K3
b.	Differentiate between deadlock avoidance and deadlock prevention.	5	CO3	K3

(OR)


c. Explain in detail about Semaphore. How it can be used to solve the critical 5 CO3 K2 section problem?

CO3

10

K1

d.

Explain the scenario of the above RAG. When deadlock will be there and when deadlock will be vanished?

- 5.a. Differentiate between paging and segmentation. Also explain about 8 CO3 K2 Fragmentation.
 - b. Explain about the disk in detail. Draw its structure and write all its parameters 7 CO4 K1 with formula.

(OR)

c. Explain in detail about file access methods with diagram.
d. Differentiate between SCAN and C-SCAN disk scheduling algorithm with 5 CO4 K1 diagram.

--- End of Paper ---