Reg.
8.

Time: 3 hrs

QP Code: RM21BTECH455

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Sixth Semester Regular) Examinations, May – 2024 **21BECPC36002 - Microwave Engineering** (ECE)

Maximum: 70 Marks

(The figures in the right hand margin indicate marks)

PART – A	$(2 \times 5 = 10 \text{ Marks})$		
Q.1. Answer <i>ALL</i> questions	CC)#	Blooms Level
a. Differentiate between phase velocity and group velocity with expressions.	CC	D1	K1
b. A 5 dB attenuator is specified with a VSWR of 1.2. Assuming attenuate	or is Co	02	K3
reciprocal, find S_{11} .			
c. Write down the S-Matrix of Magic Tee / Hybrid Tee.	CO	D2	K1
d. What is the role of helix inside a TWT?	CC	D4	K2
e. Draw the Applegate Diagram.	CO	D4	K1
PART – B	(15 x	4 = 60 I	Marks)
Answer ALL questions	Marks	CO#	Blooms Level
2. a. Explain in detail with proper derivation about single stub matching	10	CO1	K3
b. Define reflection coefficient, return loss, VSWR and establish relationship	nip 5	CO1	K3
between them. (OR)			
c. A distortion less transmission line operating at 100 MHz frequency has $Z_0=60$ ohm, $\alpha=0.02$ Np/m, phase velocity=0.6c {c is the velocity of light} . Find the Conductance and resistance value.	7	CO1	К3
d. If the conductors of a transmission line are perfect and Z_0 =50 ohm and β =100 rad/m. Find out resistance, inductance, capacitance and conductance.	8	CO1	K3
3.a. Find the cut-off frequency for th TE12 mode in a hollow rectangular waveguide whose dimensions are i) a= 2.286 cm and b= 1.016 cm	7	CO2	K3
 ii) b= 2.286 cm and a= 1.016 cm {a is the broad dimension and b is the narrow dimension} b. A hollow rectangular waveguide operates at the frequency of 1 GHz and has dimensions of 5 cm ×2 cm. Check about the propagation of TE₂₁with proper calculations. 	it 8	CO2	K3
(OR)			
 Explain about the microwave circulator and isolators with proper diagram a expressions. 	nd 10	CO2	K2
d. Differentiate between E-Plane, H-Plane and Magic Tee with diagram and Matrix.	S- 5	CO2	K2

4.a.	Explain with proper diagram about the operating principle of Reflex Klystron.	8	CO3	K3
b.	Explain about the construction and Operation of Schottky Barrier Diode	7	CO3	K2
	(SBD).			
	(OR)			
c.	Explain the mechanism in 8-Cavity magnetron with diagram.	5	CO3	K2
d.	Explain in detail about TWT Structures with diagram and expressions. What	10	CO3	K2
	are its applications?			
5.a.	Explain about MASER with proper diagram. Which materials are used for	10	CO4	K1
	MASER? What are the applications of MASER?			
b.	Explain in detail about negative resistance with the help of VI characteristic.	5	CO4	K1
	(OR)			
c.	Design a rectangular patch antenna by calculating length and width operating	10	CO4	K3
	at 2.4 GHz whose substrate has a dielectric constant of 4.4 with a height of			
	1.6 mm.			
d.	Why patch antenna is widely used? Explain about it along with its	5	CO4	K1
	applications with diagram.			

--- End of Paper ---