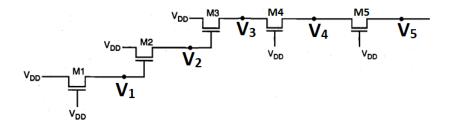
Α	Υ	21	

QP Code: RM21BTECH439 Reg. No

GIET UNIVERSITY, GUNUPUR - 765022


B. Tech (Sixth Semester Regular) Examinations, May - 2024

21BECPC36001 - Digital VLSI Design

(ECE)

T	ime: 3 hrs	A aximur	n: 70 M	arks	
			$(2 \times 5 = 10 \text{ Marks})$		
Q.1.	Answer ALL questions		CO#	Blooms Level	
a. :	Explain bottom up approach in VLSI design.		CO1	K1	
b. :	Draw the symbol of enhancement and depletion type of n-MOSFET.		CO1	K2	
c.	What is parasitic capacitance in CMOS circuit?		CO2	К3	
d.	What is interconnect delay in VLSI circuit?		CO3	К3	
e.	Draw the nMOS pass transistor, and explain its working.		CO4	К3	
PART – B		(15 x	4 = 60 N	(Jarks	
Answ	ver ALL questions	Marks	CO#	Blooms Level	
2. a.	What is oxidation and photolithography in semiconductor fabrication industry? Discuss the quality of oxide and method of photolithography.	7	CO1	K2	
b.	Explain top down approach for VLSI logic circuit design. (OR)	8	CO1	K3	
c.	What is stick diagram? Draw an enhancement type load (nMOS) inverter circuit and design its stick diagram.	7	CO1	K2	
d.	Explain each step of fabrication for n-MOSFET,	8	CO1	К3	
3.a.	Explain the working principle of p-MOSFET for different gate bias condition. Draw its cross-sectional view to explain its region of operation.	10	CO2	K4	
b.	What are the advantages of dynamic logic circuit?	5	CO2	K4	
	(OR)				
c.	Calculate the threshold voltage V_{TH} at $V_{SB} = 0$, for a polysilicon gate n-channel MOSFET. Substrate doping density $N_A = 10^{16}$ cm ⁻³ , polysilicon gate doping density $N_D = 2 \times 10^{20}$ cm ⁻³ , gate oxide thickness $t_{ox} = 500$ Å, and oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10}$ cm ⁻² .	10	CO2	K3	
d.		5	CO2	K4	
4.a.	Draw the clocked CMOS SR-latch circuit based on NAND gate and explain its function and write the corresponding truth table.	10	CO3	K4	
b.	type load.	5	CO3	K5	
	(OR)	4.0	002	77.4	
c.	Draw the circuit diagram for CMOS D-Latch using transmission gate and explain its working.	10	CO3	K4	

- d. What is transmission gate? Implement the Boolean expression $X\overline{Y}+XY$ using 5 transmission gate.
- 5.a. What is voltage Bootstrapping. Explain bootstrapping technique by considering 10 CO4 K5 an inverter (with enhancement type nMOS load with unknown voltage Vx at gate terminal) circuit and find ratio of boot capacitor and source-to-substrate capacitance.
 - b. Observe the given circuit and find the voltage V₁, V₂, V₃, V₄, and V₅. Consider 5 the threshold voltage for nMOS transistor M1, M2, M3, M4, and M5 as V_{TH1}, V_{TH2}, V_{TH3}, V_{TH4}, and V_{TH5} respectively.

(OR)

- c. What is precharge and evaluate in Dynamic logic circuit? Using this technique, 10 CO4 K5 draw and explain the working of dynamic CMOS circuit for the Boolean expression (A₁ · A₂ · A₃)+(B₁ · B₂).
- d. What is domino CMOS logic? Explain with example. 5 CO4 K4

--- End of Paper ---