Reg.

No

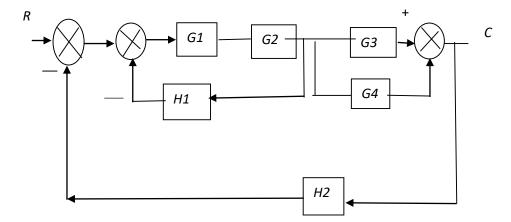
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Sixth Semester Regular) Examinations, May – 2024

21BECPC36003 - Control Systems

(ECE)

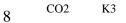
Time: 3 hrs

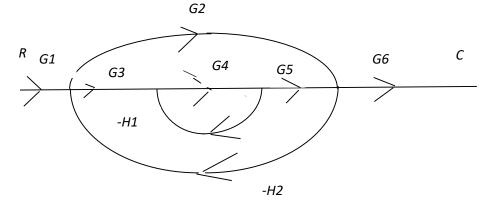
±)


Maximum: 70 Marks

(15 x 4 = 60 Marks)

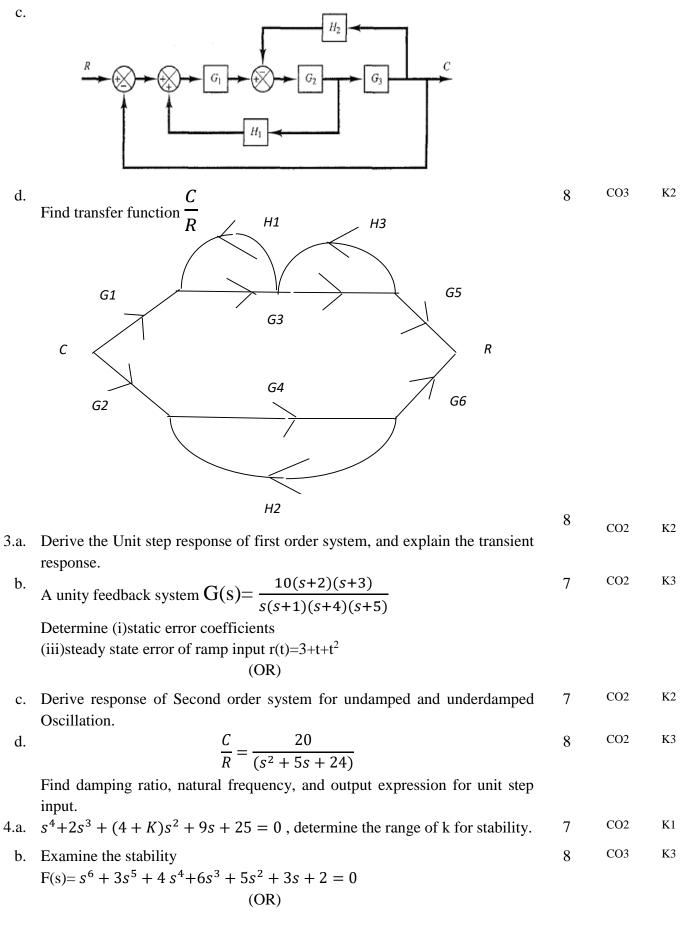
(The figures in the right hand margin indicate marks)							
$\mathbf{PART} - \mathbf{A}$		$(2 \times 5 = 10 \text{ Marks})$					
Q.1. Answer ALL questions		CO #	Blooms				
			Level				
a.	Write the difference between Open loop and Closed Loop system.	CO1	K1				
b.	What is expression for Peak time, and Settling time.	CO2	K1				
c.	What is Principle of Argument in Nyquist state.	CO2	K1				
d.	How angle of arrival is calculated.	CO2	K1				
e.	What is the special case of routh Hurwitz criterion for stability analysis.	CO2	K2				


PART – B


Answer ALL questions	Marks	CO #	Blooms Level
2. a. Find transfer function C/R.	7	CO2	K2

Find transfer function C/R.

b.



(OR)

Find the Transfer Function of the. block Diagram.

7 CO2 K2

c.	Sketch the Root Locus for the function $G(s)H(s) = \frac{k}{s(s+5)(s+10)}$	8	CO3	K2
d.	$G(s)H(s) = \frac{14}{s(s+1)(s+2)}$, draw the polar plot.	7	CO2	K2
5.a.	A unity Feedback Control system has $G(s) = \frac{10}{s(0.1s+1)(0.4s+1)}$	8	CO3	K2
h	Draw the bode plot, Find G.M, P.M, an comment on stability.	7	CO2	K3
b.	Draw the Nyquist plot analysis of the $G(s)H(s) = \frac{1}{s(s+1)}$. Predict the	1	002	115
	stability. (OR)			
c.	Find the State transition matrix of $[0, -1]$	8	CO3	K2
	(i)A= $\begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$ (ii) What are advantage of stage variable analysis, and write the sate equation,			
	and output equation of state variable.			
d.	Find the Transfer function of a state model of a system given by	7	CO2	K2
	$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} U1 \\ U2 \end{bmatrix}$			

And

•

 $\begin{bmatrix} Y1\\ Y2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} X$

--- End of Paper ---