

QP Code:RD21BTECH299

GIET UNIVERSITY, GUNUPUR – 765022

AY 21

B. Tech (Fifth Semester Regular) Examinations, December - 2023

21BBTPC35004 - Bioreactor Design and Analysis

(Biotechnology)

Ti		Maximun	n: 70 M	arks
$(The \ figures \ in \ the \ right \ hand \ margin \ indicate \ marks)$ $PART-A \eqno(2)$		(2 x 5 =	$2 \times 5 = 10 \text{ Marks}$	
Q.1.	Answer ALL questions		CO#	Blooms Level
	Describe the relationship between temperature and reaction rates using the A equation.	rrhenius	CO1	K2
b. I	How can you express a reaction rate in terms of the rate law equation?		CO1	K1
	Differentiate between ideal and non-ideal reactors, and explain their signification bioprocesses.	cance in	CO2	K4
d. V	Why is mass transfer crucial in bioreactors, especially for oxygen and nutrient tra	nsport?	CO3	K1
	Explain why oxygen transfer is a critical consideration in bioreactor design for processes.	aerobic	CO4	K1
PART – B (15 x 4			l = 60 N	(Iarks)
Answ	ver ALL questions	Marks	CO#	Blooms Level
2. a.	Discuss the role of catalysts in chemical reactions. Provide examples of catalyzed reactions and explain how catalysts affect reaction rates.	15	CO1	K2
	(OR)			
b.	Compare and contrast zero-order and first-order reactions, providing examples of each. How do these reaction orders affect the design of reactors in bioprocesses.	15	CO1	K2
3.a.	Compare and contrast batch and continuous bioreactors, highlighting their advantages and disadvantages. Provide examples of bioprocesses where each type is preferred.	15	CO2	K2
	(OR)			
b.	Explain the concept of conversion in chemical reactions and its calculation. How does conversion relate to reactor performance in bioprocesses?	15	CO2	K2
4.a.	Explain the significance of oxygen transfer in bioreactors for microbial growth. Discuss the factors affecting oxygen transfer rates and their implications in bioprocesses.	15	CO3	K2
	(OR)			

15

CO3

K2

b. Define and discuss the importance of three-phase fluidized bed reactors in

bioprocesses. Provide examples of their applications and advantages.

5.a. Explain the concept of bioprocess control systems and their role in automation. How do computer-coupled bioreactors contribute to efficient 15 CO4 K2 bioprocess operation and product formation?

(OR)

b. Describe the role of mechanical fittings in bioreactors, including vessel
design, piping, and valves. Why are these components crucial for efficient 15 CO4 K2
bioprocess operation?

--- End of Paper ---