QP Coo	le:RD21BTECH285	Reg. No											AY 21
			TET			SITV	CU	NIID	TID	765	022	1	
GIET UNIVERSITY, GUNUPUR – 765022B. Tech (Fifth Semester Regular) Examinations, December – 2023													
	RLANCE - OUR BERNER		21BC	HPC	3500		-		Pheno	omen	on		
Time: 3 hrs (Chemical) Maximum: 70 M												n: 70 M	arks
	(1	The figures			_	estions		.	l)			
(The figures in the right hand margin indicate marks) PART – A										(2 x 5 = 10 Marks)			
Q.1. Answer ALL questions											CO #	Blooms Level	
a. D	Define Newton's Law of	viscosity.										CO1	K2
b. How viscosity depends on temperature in case of fluids?												CO2	К3
c. What are the boundary conditions used for solving shell heat balance equation?												CO1	К3
d. Write Fick's Law of diffusion.											CO1	К2	
e. Differentiate between laminar and turbulent flow in pipe.											CO2	К3	
PART – B								((15 x 4 = 60 Marks)				
Answer ALL questions							Ν	Marks	CO #	Blooms Level			
2. a.	Explain types of flu with mathematical e	xpressions.	-	n on s	hear s	stress a	nd sh	ear st	rain p	lot	15	CO2	К3
b.	One method for deternate of flow of a N capillary from the fo	ermining the Newtonian lie	quid th		•		•		•		15	CO2	К3
	Length of cap Kinematic vi Density of lic Pressure drop Mass rate of	scosity of lic quid: p in the horiz	ontal tu	4 9 1be: 4	55.2 k .829×	10^{-5} m^2							
3.a.	A heated sphere of r	adius R susp	ended i	n a laı	ge mo	otionle	ss boc	•			15	CO2	K3
	Show that, $Nu = \frac{hL}{K}$	$\frac{0}{2} = 2$. When	e h is	heat	trans	fer co	efficie	ent, L) is t	the			
	diameter of sphere a		nermal (OR)	condu	ctivity	<i>.</i>							
b.	The heat generate										15	CO2	K3
	$S_v = \mu \left(\frac{v}{b}\right)^2, \frac{w}{m^3}$ w	where v is t	ne upp	er pla	ate ve	locity;	b is	the	distan	ice			
	between two plates. Taking origin at the lower plate with boundary condition $x = 0$. To To and $y = b$. To conduct the second									on			
	$x = 0, T = T_0, and x =$	-	$1(\mathbf{v})^2$	2]									
	Derive: T - T _o	L											
4.a.	In studying the rate solvent B, the rate c through a stagnant	ontrolling st	ep is di	ffusio	n of A	from	the p	article	e surfa	nce	15	CO2	K3

The molar solubility of A in B is C_{A0} and the main stream is $C_{A\delta}$.

Show that Rate of leaching is $N_{AZ} = \frac{D_{AB}(C_{AO} - C_{A\delta})}{\delta}$ (OR)

CO2 K3 b. A droplet of liquid A of radius r_1 , is suspended in a stagnant film of gas of 15 radius r₂. Boundary conditions are $r = r_1$, $x_A = x_{A1}$ and $r = r_2$, $x_A = x_{A2}$.

Taking the value of constant as $r_1^2 N_{Ar1}$

Show that,

$$\mathbf{N}_{\mathrm{Ar1}} = \frac{\mathrm{CD}_{\mathrm{AB}}}{\mathbf{r}_2 - \mathbf{r}_1} \left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right) \ln\left(\frac{\mathbf{x}_{\mathrm{B2}}}{\mathbf{x}_{\mathrm{B1}}}\right),$$

When $r_2 \rightarrow \infty$, what will be the expression for N_{Ar1}.

CO2 Derive Reynold's Stress components from equation of motion. K2 5.a. 15

(OR)

CO2 K2 b. Derive the dimensionless shell energy balance differential equation in 15 turbulent pipe flow and mention the boundary conditions.

--- End of Paper ---