
QP Code:RD21BTECH293 Reg. No			AY 21			
GIET UNIVERSITY, GUNUPUR - 765022 B. Tech (Fifth Semester Regular) Examinations, December - 2023 21BEEPC35003/21BELPC35003- Signals and Systems (EEE & EE)						
	Maximum	n: 70 Ma	arks			
(The figures in the right hand margin indicate marks) PART – A	(2 x 5 =	(2 x 5 = 10 Marks)				
Q.1. Answer ALL questions		CO #	Blooms Level			
a. Two discrete time signals are represented by: $x_1[n] = \{2, 2, 2, 2\}$		CO1	K1			
$x_{1}[n] = \{2, 2, 2, .2\}$ $x_{2}[n] = \{\underbrace{1}_{\uparrow}, 1, -1, 1\}$						
Find $x_1 \times x_2$ b. Represent $x[n] = \delta[n] + \delta[n-1] + \delta[n+2]$ in sequential and tabular form.		CO1	K1			
c. Check whether the following system is causal and non-causal.		CO2	K2			
$y[n] = x[n] + \frac{1}{x[n+1]}$						
d. Differentiate between linear convolution and circular convolution.		CO3	K1			
e. Find the z-transform and ROC for $x[n] = \{2, -2, 2, 3, 6\}$		CO4	K2			
↑						
PART – B	(15 x 4 = 60 Marks)					
Answer ALL questions	Marks	CO #	Blooms Level			
2. a. Determine whether the following signal is periodic or not? If periodic find the periodicity.	8	CO1	K2			
$x[n] = \sin\left(\left(\frac{3\pi n}{4}\right) + 1\right)$						
 b. Define unit step, unit ramp, and unit impulse discrete time systems. Represent them in graphical form. 	7	CO1	K1			
(OR)						
c. Two discrete time signals are represented by: $x_1[n] = \{2, 1, 2, 1, -2\}$	8	CO1	K2			
$x_1[n] = \{2, 1, 2, 1, -2\}$ $x_2[n] = \{\underbrace{1}_{\uparrow}, 1, 1, 1, 2\}$						
Find $(i)2x_1 + 3x_2$ and $(ii)3x_1 - 7x_2$						
d. Find the even and odd parts of the signal $x[n] = 4^n$.	7	CO1	K1			
3.a. Check the stability of following systems. (i) $y[n] = \frac{1}{x[n+1]}$ (ii) $y[n] = \delta[n] + x[n+1]$	7	CO2	K1			
b. As shown in the figure find y[n] if, $x[n] = \{1, -1, 1, 111\}, h_1[n] = \{2, -1, 0, 1\}, h_2[n] = \{3, -1, 1, 1\}$	8	CO2	K1			

	(OR)			
c.	Determine whether the following systems are time-invariant or time variant. (i) $y[n] = x[n] + x[n-1]$ (ii) $y[n] = ax[n]+x[-n]$	7	CO2	K1
d.	As shown in the figure find y[n] if, $x[n] = \{-1, -1, 1\}, h_1[n] = \{2, -1, 0\}, h_2[n] = h_3[n] = \{2, 2, 1\}$	8	CO2	K1
	x[n] $h1[n]$ $h2[n]$ $y[n]$			
4.a.	Find the natural response of following discrete time system: y[n]+3y[n-1]+2y[n-2] = x[n]+x[n-2] with initial conditions $y[-1] = 1$, y[-2] = 1	7	CO3	K1
b.	An LTI system $y[n]+ 5y[n-1] + 6y[n-2] = 2x[n-1] + x[n-1]$. Find the natural response with initial conditions $y[-1] = y[-2] = 1$.	8	CO3	K1
	(OR)		~~~	
с.	Find the unit step response of the following difference equation: y[n]+12y[n-1]+36y[n-2] = x[n]+x[n-1] with the initial conditions $y[0]=4$ and $y[1] = 2$.	7	CO3	K1
d.	Given two discrete time sequences: $x_1[n] = \{1, -1, 1\}$ and $x_2[n] = \{1, 2, 2\}$ Find the circular convolution of the two sequences.	8	CO3	K1
5.a.	Find the inverse z-transform of	7	CO4	K1
	$X(z) = \frac{z(z^2 + 7z + 10)}{(z-1)(z-3)(z-9)}$ using partial fraction method.			
b.	Find the impulse response of the following system described by the difference equation: $y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$ using z-transform method.	8	CO4	K1
	(OR)	_	CO4	V 1
с.	Find the z-transform of the sequence $x[n] = na^n u[n]$	7	CO4	K1
d.	Determine the unit step response of the following system described by the difference equation: $y(n) - 0.7y(n-1) + 0.12y(n-2) = x(n-1) + x(n-2)$ using	8	CO4	K2

z-transform method.

--- End of Paper ---