

QP Code: RD21BTECH331

B. Tech (Fifth Semester Regular) Examinations, December – 2023 **21BELPE35001 / 21BELPE35001 – Renewable Energy Sources**

(EE & EEE)

Time: 3 hrs Maximum: 70 Marks

	(The figures in the right hand margin indicate marks)				
PART – A			5 = 10 Marks		
Q.1	. Answer ALL questions		CO#	Blooms Level	
a.	Name various types of solar collectors. Which one gives superior performance?		CO1	K2	
b.	Define cell, module and array.		CO1	K2	
c.	What ranges of wind speed is considered favourable for wind power generation?		CO2	K1	
d.	Explain the process of gasification of solid biofuels. What is the general compositi	on of	CO3	K1	
	gas produced and what is its heating value? What are its main applications?				
e.	Explain the working principle of a hybrid electric vehicle with a schematic block of	liagram.	CO4	K1	
PA	ART - B	(15 x 4	= 60 N	larks)	
Answer ALL questions		Marks	CO#	Blooms Level	
2. a	a. What is MPPT? Briefly explain the methods to implement MPPT system effectively.	10	CO1	К3	
ł	b. Indicate the similarities between Distributed generation and Dispersed generation and explain the advantages of these technologies .	5	CO1	K2	
	(OR)				
(c. Draw the equivalent circuit of Solar cell and obtain the expression for Open circuit voltage of Solar cell.	10	CO1	К3	
		_	CO1	K2	
	d. Briefly discuss about solar processes.	5			
3.8		10	CO2	К3	
	The total power produced ii) the Actual power produced by a turbine of 100m				
	diameter with an efficiency of 40%. Assume air density = 1.226 J/Kg/m ³ , Betz limit of 0.593.				
ł	b. What are the advantages and disadvantages of wind power?	5	CO2	K1	
	(OD)				

(OR)

c.	Design the rotor radius of a multi blade wind turbine that operates in a wind	10	CO2	K3
	speed of 36kmph to pump water at a rate of 6m3/hr. with a lift of 6m. Also			
	calculate the angular velocity of the rotor. Given water density=1000 kg/m3;			
	g = 9.8m/sec; water pump efficiency = 50%; efficiency of rotor to pump			
	= 80%; $CP = 0.3$, $\lambda = 1.0$ and air density = 1.2 kg/m3.			
d.	Write short notes on: i) reactive power compensation of wind turbines, ii)	5	CO2	K2
	wind power applications.			
4.a.	Explain the operating of Floating Drum and Fixed Dome biogas digesters	10	CO3	K2
	with neat diagram.			
b.	Explain the process of gasification of solid bio-fuels. What are its main applications?	5	CO3	K1
	(OR)			
c.	Explain the working principle of hybrid electric vehicle with schematic block	10	CO3	K1
c.	Explain the working principle of hybrid electric vehicle with schematic block diagram.	10	CO3	K1
c.		10 5	CO3	K1
	diagram.			
d.	diagram. Explain the process of Combustion and its applications.	5	CO3	K2
d. 5.a.	diagram. Explain the process of Combustion and its applications. Write short note on i) Hydrogen fuel cells ii) MHD	5 10	CO3	K2 K1
d. 5.a.	diagram. Explain the process of Combustion and its applications. Write short note on i) Hydrogen fuel cells ii) MHD What is the need of hybrid systems? Explain any one hybrid system process	5 10	CO3	K2 K1
d. 5.a.	diagram. Explain the process of Combustion and its applications. Write short note on i) Hydrogen fuel cells ii) MHD What is the need of hybrid systems? Explain any one hybrid system process with neat diagram.	5 10	CO3	K2 K1

--- End of Paper ---