

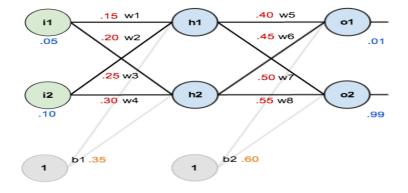
GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fifth Semester Regular) Examinations, December – 2023
21BCMPF35001 – Artificial Neural Networks

21BCMPE35001 - Artificial Neural Networks (CSE (AIML))

Time: 3 hrs Maximum: 70 Marks

Ti	me: 3 hrs	Maximur	n: 70 M	arks	
(The figures in the right hand margin indicate marks) PART – A		(2 x 5 :	$(2 \times 5 = 10 \text{ Marks})$		
Q.1. A	Answer ALL questions		CO#	Blooms Level	
a. I	List out the difference between ANN and BNN.		CO4	K2	
b. N	Mention the characteristics of problems suitable for ANNs.		CO3	К3	
c. I	How are ANNs classified on the basis of training imparted to them? Give in deta	il.	CO1	К3	
d. C	Compare multilayer perceptron and Radial Basis Function networks.		CO3	K2	
e. S	Show the structure of Kohonen's SOFM.		CO2	K2	
PART – B		(15 x 4	4 = 60 N	(Jarks)	
Answ	ver ALL questions	Marks	CO#	Blooms Level	
2. a.		7	CO1	K1	
	bipolar sigmoid functions.	_	G02	170	
b.	What are Neural Networks? What are the types of Neural networks?	8	CO2	K2	
	(OR)				
c.	List the applications of ANN and explain any two in details.	7	CO2	K1	
d.	How Artificial Neural Networks can be applied in future?	8	CO2	K2	
3.a.	Construct and test the hamming network to cluster four vectors. Given the	8	CO3	K2	
	exemplar vectors $e(1)=[1 -1 -1 -1]$, $e(2)=[-1 -1 -1 1]$ the bipolar input vectors				
	are $x1=[-1 \ -1 \ 1 \ -1]$, $x2=[-1 \ -1 \ 1 \ 1]$, $x3=[-1 \ -1 \ -1 \ 1]$ and $x4=[1 \ 1 \ -1 \ -1]$.				
b.	Draw and explain neural network based OR function?	7	CO2	K1	
	(OR)	8			
c.	Design a Hebbian neuron/net to implement the logic 2 input AND function		CO2	K1	
	using bipolar input-output pattern?				
d.	Using the linear separability concept, obtain the response for OR function (Takes bipolar inputs and bipolar target)	7	CO3	K2	
4.a.	Realize the Ex-OR function by using the McCulloch-Pitts neuron model.	8	CO3	К3	


b. Define the problem of handwritten digit recognition. With suitable diagram, 7 cos explain architecture of multilayer feed forward network for handwritten character recognition?

K2

K3

(OR)

c. Calculate the total error of the network after using identity binary and bipolar 8 CO3 K1 activation function?

- d. Explain the architecture and algorithm of ADALINE. 7 CO2 K2
- 5.a. Construct a kohonen self-organising map (KSOM) to cluster the four given 8 CO2 K3 vector [0101], [0001], [0011] and [1000]. The number of clusters to be formed is two. Assume the initial learning rate of 0.4.
- b. Briefly discuss about Hamming Net with example. 7 CO2 K3

(OR)

- c. Consider a Kohonen network with two cluster units and five input units. The weigh vectors for the cluster units are w1 = [0.1, 0.3, 0.5, 0.7, 0.9] and w2 = [0.9, 0.7, 0.5, 0.3, 0.1] Use the square of the Euclidean distance to find the winning cluster unit for the input pattern.
- d. Draw the typical architecture of ART-1 and explain its operation. 7 CO3 K3

--- End of Paper ---