QP Code:F	RD21BTECH287	Reg. No										AY 21
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Fifth Semester Regular) Examinations, December – 2023 21BCVPC35003 – Geotechnical Engineering - II (Common to all branches) Maximum: 70 Marks												
Answer all questions												
(The figures in the right hand margin indicate marks)									= 10 Marks)			
Q.1. Ans	wer ALL questio	ns									CO #	Blooms Level
a. What is the use of Newmark's chart? Explain the procedure for using the chart.								CO1	K2			
b. What is meant by Neutral stress?								CO1	K2			
c. Write the formula to determine the settlement from plate load test data for cohesion less soils.								CO2	K2			
d. What are the advantages and disadvantages of accessible exploration?								CO3	K2			
e. Enumerate the basic types of failure of a finite slope occurrence.							CO4	K2				
PART – B (15 x 4							= 60 Marks)					
Answer ALL questions Marks						CO #	Blooms Level					
[i	uniform press n metres] of co ombinations whice	orners (0,10),	(8,10),	(8,0), and	d (0,0). Fi	nd th	e (m,	,n)	7	CO1	K4
	epth of 8m vertic											
b. C a	compute the vertion circular ring type objected to a uniference	cal stress at a dependence of footing (epth of 1 width o	.5m vertic of ring=2n	ally be	eneath	the c			8	CO1	K4
		(OR)									
c A	water tank is fo	ounded on a cir	rcular ri	ng type fo	undati	ion 7	The ri	no is	of	7	CO1	K4

- c. A water tank is founded on a circular ring type foundation. The ring is of 7 CO1
 10 m external diameter and 6m internal diameter. Assuming a uniformly
 distributed load of 300kPa, determine the vertical pressure at a depth of 6 m
 below the centre of the foundation.
- d. A tank is founded on a circular ring type foundation. The ring is of 12 m
 K4 external diameter and 6m internal diameter. Assuming a uniformly distributed load of 250kPa, determine the vertical pressure at a depth of 5m below the centre of the foundation.
- 3.a. Calculate the ultimate net bearing capacity of (i) a strip footing 2 m wide 8 CO2 K4
 (ii) a square footing 3m x 3 m, and (iii) a circular footing 3 m in diameter. All footings are located on the ground surface and the groundwater level is at the

	ground surface. The soil is medium-dense coarse-grained with $\gamma_{sat} = 17$ kN/m3 and $\emptyset = 30^{\circ}$, Nc = 37.16, Nq = 22.45, N $\gamma = 19.13$			
1.		7	CO2	K2
b.	What are the demerits of plate load test? Explain.	7	02	K2
	(OR)	0	600	17.4
c.	Compute the allowable bearing capacity of a square footing of 2 m size	8	CO2	K4
	resting on dense sand of unit weight 20 kN/m^3 . The depth of foundation is 1			
	m and the site is subject to flooding. The bearing capacity factors are:			
	$Nc = 55$, $Nq = 38$, and $N\gamma = 45$.	_		
d.	Explain the procedure to estimate the pile group capacity in sands and clays.	7	CO2	K2
4.a.	Compute the area ratio of a thin walled tube sampler having an external	7	CO3	K4
	diameter of 6cm and a wall thickness of 2.25 mm. Would you recommend the			
	sampler for obtaining undisturbed soil samples? Why?			
b.	A retaining wall supports a two layered backfill having the following	8	CO3	K4
	properties: Upper layer: angle of internal friction = 30° , unit			
	weight = 16 KN/m ³ thickness=3m Lower layer: angle of internal friction = 450			
	unit weight = 20 KN/m ³ ; thickness = 2 m. Determine the total passive earth			
	pressure.			
	(OR)			
c.	A retaining wall with a vertical smooth back is 6 m high. It supports a	7	CO3	K4
	cohesion less soil ($\gamma = 19$ kN/m3, $\phi = 30^{\circ}$). The surface of the soil is horizontal			
	and carries a surcharge of 15kPa. Determine the active thrust on the wall.			
d.	A 5m high retaining wall supports a clayey backfill with bulk density 18	8	CO3	K4
	kN/m^3 cohesion c = 30 kN/m^3 and ϕ = 30°.Determine the earth pressure			
	developed per metre length of the wall when wall is pushed towards the			
	backfill and also the point of application.			
5.a.	Write the formula to determine the factor of safety (as per method of slices)	7	CO4	K3
	of a dry finite slope made of C $-\emptyset$ soil, and explain the terms in it.			
b.	Give the step by step procedure of analyzing stability of a finite slope using	8	CO4	K4
	Swedish circle method.			
	(OR)			
c.	With the help of a neat sketch show various forces considered for the analysis	7	CO4	K3
	of a finite slope using Bishop's simplified method. Mention the equation for			
	factor of safety given by this method.			
d.	Derive the equation for factor of safety of an infinite slope when soil is dry	8	CO4	K4
	and cohesion less. What will happen to the factor of safety when the same			
	slope is under submergence			

--- End of Paper ---