GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester Regular) Examinations, December - 2023

21BECPC35004 – Electromagnetic Waves

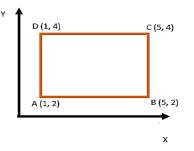
Time: 3 hrs

(ECE)
(ECE)

Maximum: 70 Marks

(The figures in the right hand margin indicate marks)								
PART – A	(2 x 5 = 10 Ma)	(2 x 5 = 10 Marks)						
Q.1. Answer ALL questions	CO #	Blooms Level						
a. Find the area of the parallelogram by the vectors $\vec{A} = 4a_x - a_y + 5a_z$	CO1	K3						
and $\overrightarrow{B} = -a_x + 2a_y + 3a_z$.								
b. Define Stoke's theorem with proper expression.	CO1	K2						
c. Why magnetic monopole does not exist? What is its corresponding equation?	CO2	K2						
d. If the VSWR is 12.5 find out reflect coefficient for the plane wave.	CO3	K1						
e. Explain about Types of transmission line	CO3	K1						

PART – B


(15 x 4 = 60 Marks)

Answer ALL questions	Marks	CO #	Blooms
			Level
2. a. Verify the Stoke's theorem for the region shown in figure below.	8	CO1	K3

The magnetic field intensity is given as $\vec{H} = y^2 a_x + 3x a_y$

Reg.

No

b. Explain about gradient. Define it in rectangular, cylindrical and spherical 7 CO1 K2 coordinate system. Write the properties and key points.

(OR)

c. Two point charges are placed at a distance 8 cm from each other. If one 8 CO1 K3 charge is 10 times of the other, find out the expression for the magnitude of

charge between them. { $\epsilon_r = \frac{1}{4\epsilon_0}$ }

- d. State and Explain Gauss Law with proper expressions. 7 CO1 K2
- 3.a. Write Maxwell's Equations in differential, integral and phasor form. 10 CO2 K3

b. A circular loop located on $x^2 + y^2 = 9$, z =0 carries a direct current of 10 5 CO2 K3 Amp along a_{ϕ} . Determine magnetic field intensity H at (0, 0, 4) and (0, 0, -4).

```
(OR)
```

c.	In detail explain about modified Amperes Circuital Law. What is the drawback of ampere's circuital law?	10	CO2	K3
d.	Explain in detail about Biot Savarts Law with diagram and expressions.	5	CO2	K2
4.a.	In free space, a plane wave with $H_i=10 \cos (10^8 t - \beta z)a_x \text{ mA/m}$ is incident normally on a lossless dielectric medium where $\varepsilon = 2\varepsilon_0$ and $\mu = 8\mu_0$. Determine the reflected wave Hr and Er.	10	CO3	К3
L		F	CO3	K1
b.	Differentiate between skin depth and loss tangent with relevant formulas . (OR)	5	005	KI
c.	A lossy dielectric has an intrinsic impedance of $200 < 30^{\circ}$ ohm at a particular angular frequency "w" at that frequency the plane wave propagating through the dielectric has the magnetic field component $H = 10e^{-\alpha x} \cos(wt - 0.5x)a_y A/m$. Find E and α . Determine the skin	10	CO3	K3
	depth.			
d.	Derive the Helmoltz Equation in lossy dielectric.	10	CO3	K1
5.a.	Find the cut-off frequency for the TE_{12} mode in a hollow rectangular	8	CO4	K3
	waveguide whose dimensions are			
	i) a= 2.286 cm and b= 1.016 cm			
	ii) $b=2.286$ cm and $a=1.016$ cm			
	{a is the broad dimension and b is the narrow dimension }			
b.	Explain with derivation about the impedance matching by a quarter wave	7	CO4	K2
	transmission line.			
	(OR)			
c.	A lossless transmission line of length 100 m has an inductance of $28 \mu H$ and a	8	CO4	K3
	capacitance of 20 nF. Find			
	i) Phase velocity			
	ii) Characteristic impedance			
	iii) Phase constant at 100 KHz frequency			
d.	Derive Expression for the input impedance of the transmission line.	7	CO4	K2
	End of Paper			