QP Coo	de:RD21BTECH291 Reg. No			AY 21	
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Fifth Semester Regular) Examinations, December – 2023 21BECPC35003 – Digital Signal Processing (ECE)					
Time: 3 hrs Maximum: 70 Marks (The figures in the right hand margin indicate marks)					
PART – A			(2 x 5 = 10 Marks)		
Q.1. A	Answer ALL questions		CO #	Blooms Level	
a. F	Find the value of x ((n-753)) ₄ if x(n) = $\{1, 2, -2, 4\}$.		CO1	K2	
b. What is Convolution property?			CO1	K1	
c. How many multiplications and additions are required for 32-point DFT?			CO2	K1	
d. Why linear phase FIR filters are also called as constant delay filters?			CO3	K1	
e. D	Draw the basic structure of 1 st order digital IIR filter.		CO4	K2	
PART – B			(15 x 4 = 60 Marks)		
Answer ALL questions		Marks	CO #	Blooms Level	
2. a.	The DFT of $x(n)$ is described as X(K)={0,-1-i,6,-1+i}. Find the DFT of $x^2(n)$ (OR)	15	CO1	K3	
b.	Calculate the linear convolution using Overlap Save method if $x(n)=\{1,2,3,4,4,3,2,1,0,5\}$ & h(n)= $\{1,-3,4\}$?	15	CO1	K3	
3.a.	Find the 8-point DFT using DIF-FFT algorithm if $x(n) = \{1, -2, 2, 3, -1, 4\}$.	15	CO2	K3	
	(OR)				
b.	Find the DFT of the given signals using 4-point DFT if $g(n)=\{1,2,0,1\}$ and $h(n)=\{2,2,1,1\}$.	15	CO2	K3	
4.a.	Design a FIR filter using frequency sampling of length 7 if the desired frequency response is				
	$H_d(\omega) = e^{-j2\omega}$ for $-\pi/2 \le \omega \le \pi/2$	15	CO3	K3	
	= 0 Otherwise				
	(OR)				
b.	Determine the coefficient of linear phase FIR filter length M=15, which has a				
	symmetric unit sample response and frequency response that satisfies the				
	condition	15	CO3	K3	

$$Hr\left(\frac{2\pi K}{15}\right) = 1 \qquad K = 0, 1, 2, 3$$
$$= 0.4 \qquad K = 4$$
$$= 0 \qquad K = 5, 6, 7$$

5.a. If $H(z) = \frac{3+3.6z^{-1}+0.6z^{-2}}{1+.01z^{-1}-0.2z^{-2}}$ then draw the Parallel form structure using 1st order and 2nd order transfer function 15 CO4 K3

(OR)

 b. Design a digital IIR filter using impulse invariant method and the system function is
7

$$H(s) = \frac{3}{(s+1)(s-5)}$$

c. Convert the analog filter with system function

$$H(s) = \frac{s+0.1}{(s+0.1)^2+9}$$

into a digital IIR filter using impulse invariance transformation method. The digital filter is to have resonant frequency of $\pi/2$.

CO4

K3

--- End of Paper ---