

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester Regular) Examinations, December - 2023

21BCHPC35002 - Chemical Reaction Engineering- I

(Chemical)

Time: 3 hrs Maximum: 70 Marks **Answer all questions**

(The figures in the right hand margin indicate marks)

PART – A		(2 x 5 =	$(2 \times 5 = 10 \text{ Marks})$	
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level
a. A certain reaction has a rate given by $-r = 0.005C^2$, mol/cm ³ min. If the concentration is to be expressed in mol/liter and time in hours, what would be the value and units of the rate constant?		CO2	K4	
b. ј	$f_{-r_A} = -\frac{dC_A}{dt} = 0.2 \frac{mol}{lit.sec}$, when $C_A = 1.5 \frac{mol}{lit}$, what is the rate of reaction when $C_A = 10$ mol/lit for a zero order reaction?		CO2	K2
	c. Calculate the rate of reaction for a reactant A for which concentration changes from 0.2 mole/l to 0.12 mole/l in 2 minutes.		CO2	К3
d. I	Derive the expression for conversion in terms of concentration		CO1	K2
	. Which is the most favorable contacting pattern to get maximum R in among PFR and MFR? Justify the answer.		CO2	K4
1	VITA: Justify the answer.			
PART – B (15 x 4		= 60 N	(Iarks	
Answer ALL questions Mar		Marks	CO#	Blooms Level
2. a.	Write the classification of chemical reaction based on different modes?	7	CO1	K1
b.	A rocket mixture burns a stoichiometric mixture of fuel (liquid hydrogen) in	8	CO2	K4
	oxidant (liquid oxygen). The combustion chamber is cylindrical, 75cm long			
	and 60 cm in diameter and the combustion process produces 108 kg /sec of			
	exhaust gases. If the combustion is complete, find the rate of reaction of			
	hydrogen and of oxygen.			
	(OR)			
c.	Describe about the different intermediates used in chemical reaction with	7	CO1	K2
	examples.			
d.	Ahuman being (75 kg) consumes about 6000 kJ of food per day. Assume that the food is all glucose and that the overall reaction is	8	CO2	K3

3.a. Derive an expression for C_{Rmax} , in a series reaction of $A \to R \to S$, with the rate constants for first order reactions K₁ and K₂ are 5 and 2 min⁻¹

Find man' metabolic rate (the rate of living, loving and laughing) in terms of

 $C_6H_{12}O_6 + 6 O_2 \rightarrow 6CO_2 + 6H_2O, -\Delta H_r = 2816 \text{ kJ}$

mole of oxygen used per m³ of person per second.

respectively.

CO2

7

K3

8 CO2 K2 b. Derive the performance equation for irreversible first order reaction of variable volume batch reactor. (OR) CO₂ K3 In a batch reactor, reactant is 70% converted after 8 min and 90% converted 7 after 18%. Find the rate expression to represent this reaction of C_{A0}= 1 mol/lit CO2 d. Liquid A decomposes by second-order kinetics, and in a batch reactor 50% of 8 **K**3 A is converted in a 5-minute run. How much longer would it take to reach 75% conversion? CO₂ 4.a. A zero order reaction $(A \rightarrow R)$ with rate constant 10 occurs in a plug flow 7 K3 reactor. Find the volume required to achieve 90 % conversion with initial concentration of reactant 100 mol/lit and volumetric flow rate of reactant 25 lit/min. CO₁ 8 K2 b. Derive the performance equation for designing an ideal batch reactor. (OR) 7 CO₂ K4 c. A specific enzyme acts as a catalyst in the fermentation of reactant A. At a given enzyme concentration in aqueous feed stream (25 lit/min), find the volume of PFR needed for 90% conversion of reactant A (CA0 = 1 mol/lit). The kinetics of the fermentation at this enzyme concentration is given by $A \xrightarrow{enzyme} R,$ $-r_{A} = \frac{0.1C_{A}}{1+0.5C_{A}} \quad \frac{\text{mol}}{\text{lit.min}}$ CO₂ K3 In a plug flow reactor liquid, a decomposes by first order kinetics. The 8 conversion is 50% of A in a 5-minute run. What will be the time taken for 80% conversion of A? 7 CO1 K2 5.a. Write short note on autocatalytic reaction. 8 CO₂ K3 b. In a batch reactor, reactant is 70% converted after 8 min and 90% converted after 18%. Find the rate expression to represent this reaction of $C_{A0}=1$ mol/lit (OR) CO₂ **K**3 Reactant A in a liquid produces R and S by the following reactions: 15 A → R

Both these reactions are first order.

A **→** S

A feed with $C_{A0} = 1$ $C_{R0} = 0$ and $C_{S0} = 0$ enters in two mixed flow reactors in series (τ_1 =2 min, τ_2 =5 min). The composition in the first reactor is C_{A1} =0.4, C_{R1} =0.4 and C_{S1} =0.2. Find the composition leaving the second reactor.

--- End of Paper ---