Reg.

No

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fourth Semester Regular) Examinations, May - 2024

(Chemical)

22BCHPC24001 - Chemical Engineering Thermodynamics

Time: 3 hrs		Maximum: 70 Marks					
(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 Marks)							
$\mathbf{PART} - \mathbf{A} \tag{2 x 5}$			= IU Marks)				
Q.1. A	Answer ALL questions		CO #	Blooms Level			
a. D	bifferentiate intensive property end extensive property giving examples.		CO1	K1			
b. W	Vhat is the significance of Virial coefficients?		CO2	K3			
c. Write the reason behind the death of aquatic animals in summer season, through Henry's law.				K2			
d. W	Vhat do you mean by partial molar property?		CO2	K2			
e. W	Vrite the criteria of feasibility of a chemical reaction in terms of Gibb's free energ	y.	CO1	K2			
PART – B		(15 x 4	4 = 60 Marks)				
Answer ALL questions		Marks	CO#	Blooms Level			
2. a.	Derive the expression of first law of thermodynamics for closed system.	7	CO3	K2			
b.	One mol of gas initially at 300 and 1000 kPa undergoes a change to 350 K and 500 kPa. Calculate the changes in internal energy and enthalpy for this	8	CO2	К3			
	process. Assume that the gas is ideal and $C_p = \frac{7}{2}R$ and $C_v = \frac{5}{2}R$						
	(OR)						
c.	Reported values of Virial coefficients of isopropanol vapor at 200 0 C are B = - 388 cm ³ /mol. Calculate molar volume (V) and compressibility factor (Z) for isopropanol vap at 200 0 C and 10 bar by using	7	CO2	К3			
	(i) Ideal gas equation (ii) $Z = \frac{PV}{RT} = 1 + \frac{B}{V}$						
d.	Derive the expression of entropy change for ideal gas.	8	CO2	K3			
3.a.	Derive the expression of phase rule for intensive variables. Extend it to define both intensive and extensive variable of a system which is known as Duhem's rule.	7	CO3	K2			
b.	Assuming validity of Raoult's law, do the following calculations for the benzene(1)/toluene(2) system:	8	CO2	K3			

(i) Given x1 = 0.33 and T=100 ⁰C, find y1 and P (ii) Given x1 = 0.33 and P = 120 kPa, find y1 and T

Vapor pressure of benzene and toluene can be calculated by Antoine equation 2726.81 For benzene, $ln P^s/kPa = 13.7819 - 13.7819$ T/K - 55.578

3056.96 For toluene, $ln P^s/kPa = 13.9320 - 13.9320$ T/K-55.525 (OR)

c.	Binary system of acetonitrile (1)/ nitromethane (2) conforms closely to Raoults law. Vapor pressures for the pure species are given by the following Antoine equations:	10	CO2	K3
	$\ln P_1^{sat} / kPa = 14.2724 - \frac{2945.47}{7.49.15}$			
	$\ln P_1^{sat} / kPa = 14.2724 - \frac{2945.47}{T - 49.15}$ $\ln P_2^{sat} / kPa = 14.2043 - \frac{2972.64}{T - 64.15}$			
	Given T is in K in the Antoine equation $T = 64.15$			
	Prepare a graph showing P vs x_1 and P vs y_1 for a temperature of 75 ^o C.			
d.	Write short notes on Raoult's law for ideal solution.	5	CO1	K1
4.a.	Derive the expression for Gibbs-Duhem theorem from partial molar properties.	7	CO3	K2
b.	Derive the Maxwell's relation from the fundamental property relations of thermodynamics The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the equation H= $400x_1 + 600 x_2 + x_1 x_2 (40x_1 + 20x_2)$ Where H is in J mol ⁻¹ . Determine expressions for H ₁ and H ₂ as a function of	8	CO2	К3
	x_1 , numerical values for the pure species enthalpies H_1 and H_2 , and the			
	numerical values for the partial enthalpies at infinite dilution $\overline{H}_1^{\ \ }$ and $\overline{H}_2^{\ \ }$. (OR)			
c.	Derive the expression for the criteria for phase equilibrium in terms of	7	CO3	K2
	chemical potential.			
d.	. The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the equation $H=400x_1+600 x_2+x_1 x_2 (40x_1+20x_2)$ Where H is in J mol ⁻¹ . Determine expressions for H ₁ and H ₂ as a function of	8	CO1	K1
	x_1 , numerical values for the pure species enthalpies H_1 and H_2 , and the			
	numerical values for the partial enthalpies at infinite dilution \overline{H}_1^{∞} and \overline{H}_2^{∞} .			
5.a.	Derive the expression of mole fraction in terms of reaction coordinate ε for single reactions.	7	CO1	K2
b.	Consider a system in which the following reaction occur $CH_4 + H_2O \longrightarrow CO + 3H_2$ (1) $CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$ (2)	8	CO2	K3
	Where the numbers (1) and (2) indicate the values of j , the reaction index. If there are present initially 2 mol CH ₄ and 3 mol H ₂ O, determine expressions for the y_i as a functions of ε_1 and ε_2 .			
	(OR)			
с.	Derive the effect of temperature on equilibrium constant.	7	CO1	K2
d.	The water gas shift reaction $CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$ is carried out under following condition. The reactants consist of 1 mol of H ₂ O and 1 mol of CO. The temperature is 1100 K and the pressure is 1 bar. Given at 1100 K the value of lnK= 0.	8	CO2	K3
	Calculate the fraction of steam reacted assuming ideal gas mixture.			

- End of Paper ---