QP Code:	RM22BTECH183
----------	--------------

AY 22

Reg.

No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester - Regular) Examinations, May - 2024

21BECPC24003 - Semiconductor Devices

(ECE)

Tiı	Time: 3 hrs Maximum: 70 Marks				
	(The figures in the right hand margin indicate marks)				
PART - A (2 x 5 = 10 Marks)					
Q.1. A	Answer ALL questions		CO #	Blooms Level	
	Why the width of the Base of a BJT is made smaller than the minority carrier dif ength?	fusion	CO3	K2	
	Define 'Flat-Band voltage' for a MOS capacitor.		CO4	K2	
	Find out the probability of a state being empty for the energy state 0.22eV above the level.	Fermi-	CO1	К3	
d. I	Distinguish between PN junction diode and schottky diode		CO2	K1	
e. I	n a bipolar transistor biased in the forward active region the base current is 6 μ collector current is 500 μ A. Determine α .	A and	CO3	K3	
PART - B (15 x 4 =		60 Marks)			
Answe	er ALL the questions	Marks	CO#	Blooms Level	
2. a.	Calculate the thermal equilibrium hole concentration in Si at $T = 450$ K. The Fermi energy is 0.32 eV below the conduction band energy.	5	CO1	K2	
b.	Derive the expression for the thermal equilibrium concentration of electrons in the conduction band using effective density of states, Fermi energy and other terms.	10	CO1	K3	
	(OR)				
c.	The electron concentration in silicon at T=300K is $n_0=5 \times 10^5 \text{cm}^{-3}$	5	CO1	K2	
	 i. Determine p₀. Is this n-type or P-Type material? ii. Determine the position of Fermi energy with respect to intrinsic Fermi energy level 				
d.	Derive the expression for variation of Fermi Energy with respect to doping concentration and temperature along with the plot.	10	CO1	К3	
3.a.	Derive the Einstein relation linking 'mobility' & 'diffusion co-efficient.	10	CO2	K3	
b.	Derive the expression for Electric field of a PN Junction in Zero bias. (OR)	5	CO2	К3	
c.	Derive Total current density in a semiconductor including the expression of diffusion and drift current density.	10	CO2	К3	
d.	Derive an expression for capacitance of a reverse biased PN junction?	5	CO2	K3	
4.a.	Explain punch through breakdown in a transistor with the help of suitable diagram.	7	CO3	K1	
b.	What is Eber's Moll Model? Derive the expression for Ic & IB. (OR)	8	CO3	К3	

5.a. b.	Explain CMOS Fabrication Technology with suitable diagram. Write a short note on HEMT.	10 5	CO4 CO4	K2 K1
	(OR)			
c.	Explain MOS C-V Characteristics of a N-Mos with suitable diagram	10	CO4	K 1
d.	Calculate Cox, C'min and C'FB of a MOS capacitor with a p type silicon substrate	5	CO4	K3
	at T=300K Doped with Na = 1016cm-3. The oxide is sio2 with a thickness of			

350Ao and the gate is Aluminium.

--- End of Paper ---