Reg.

QP Code: RM22BTECH151

No

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fourth Semester Regular) Examinations, May - 2024 22BCMES24001 - Python Programming for Machine Learning (CSE - AIML)

Time	e: 3 hrs	Maxin	num: 70	Marks	
PA	(The figures in the right hand margin indicate marks) ART – A	(2 x 5 :	= 10 Ma	rks)	
Q.1.	Answer ALL questions		CO#	Blooms Level	
a.	Illustrate interactive mode and script mode of python program.		CO1	K1	
b	Explain identity operators in python.		CO1	K1	
c.	Write a python list comprehension to print "GUNPUR" 20 times.		CO2	K2	
d.	Explain what are python modules.		CO3	K2	
e.	Explain the real-time applications of tuple.		CO1	К3	
PART – B			$(15 \times 4 = 60 \text{ Marks})$		
Ansv	ver ALL questions	Marks	CO#	Blooms Level	
2. a.	Describe the features of Python that made it so popular.	8	CO1	K1	
b.	Write a program to determine how many of the numbers between 1 and 10000 contain the digit 3.	7	CO1	K3	
	(OR)				
c.	Explain about Negative indexing and List Slicing in Python with a sample program.	7	CO2	К3	
d.		8	CO2	K4	
3.a.	What is an Anonymous function and when should you use it? How Anonymous function is different from normal function?	7	CO3	K2	
b.	to n terms in the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots \frac{1}{n}$ where n is a positive integer and input by user.	8	CO3	K2	
c.	(OR) Write a python program to count the number of vowels in a string provided by the user.	7	CO3	K2	
d.	Write a program that asks the user to enter a string. The program should create a new string called new_string from the user's string such that the second character is changed to an asterisk and three exclamation points are attached to the end of the string. Finally, print new_string. Typical output is shown below:	8	CO3	K2	
4.a.	Enter your string: Qbert Q*ert!!!	7	CO4	K 1	

examples

- b. Define Polymorphism. Demonstrate how polymorphism is applied in Python. 8 (OR)
 - 8 CO3 K2
- c. Write a python function is_key_present () to check whether a given key already exists in a dictionary. Dictionary elements are to be taken from the user as input.
- 7 CO3 K4

8

- d. Explain how sets are used in real-time. Explain all the operations of sets with help of python code.
- CO3 K3
- 5.a. Demonstrate the process of loading the data 'income.csv'. and apply preprocessing of imputing the missing values of both numerical and categorical with code snippets.
- 9 CO4 K4
- b. Describe the need of visualization of data. Illustrate how bar plot and box plot are plotted using python libraries.

6 CO4 K2

(OR)

c. For the given below image 6 x 6 and kernel 3 x 3

0	0	0	1	1	1
0	0	0	1	1	1
0	0	0	1	1	1
0	0	0	1	1	1
0	0	0	1	1	1
0	0	0	1	1	1

1	0	-1			
2	0	-2			
1	0	-1			
3*:					

5 (

9

CO4

K3

CO4 K2

6*6

Apply convolutional operation and max pooling. Also specify the sizes properly of the final output.

d. Let us consider a Convolutional Neural Network having three different convolutional layers in its architecture as –

Layer-1: Filter Size – 3 X 3, Number of Filters – 10, Stride – 1, Padding – 0

Layer-2: Filter Size – 5 X 5, Number of Filters – 20, Stride – 2, Padding – 0

Layer-3: Filter Size -5×5 , Number of Filters -40, Stride -2, Padding -0

If we give the input a 3-D image to the network of dimension 39 X 39, then determine the dimension of the vector after passing through a fully connected layer in the architecture.

For the above layers specification construct a CNN architecture and illustrate each layers input and output with help of a diagram.

--- End of Paper ---