Reg.

No

GIET UNIVERSITY, GUNUPUR - 765022 B. Tech (Fourth Semester Regular) Examinations, May - 2024

22BHSHS24001- Optimization Engineering (Mechanical, EE & EEE)

Time: 3 hrs

Maximum: 70 Marks

(The figures in the right hand margin indicate marks)							
I	PART – A	$(2 \times 5 = 10 \text{ Ma})$	rks)				
Q.1	. Answer ALL questions	CO #	Blooms Level				
a.	Define Optimization Engineering with some examples.	CO1	K1				
b.	Differentiate between Canonical form and standard form of LPP.	CO1	K2				
c.	Explain the characteristics of basic feasible solution to a transportation problem.	CO2	K1				
d.	Write the Kendal's notation for Model – I of Queuing theory.	CO3	K1				
e.	State the special cases in Kuhn-tucker method.	CO4	K1				

PART – B

CO# Marks Blooms Answer ALL questions 2. a. A company sales two different products, A and B. The company makes a 7 CO1 profit of Rs. 40 and Rs. 30 per unit respectively on the two products. The products are produced by a common production process and are sold in two different markets. The production process has a capacity of 30,000 manhours. It takes 3 hours to produce a unit of product A and 1 hour to produce a unit of product B. The market has been surveyed and company officials found that the maximum units that can be sold for product A and B are 8000 and 12,000 respectively. Formulate the above as a linear programming problem.

	12,000 respectively. Formulate the above as a mean programming problem.			
b.	Solve the following problem using graphical method	8	CO1	K3
	$Minimize \ Z = 20x_1 + 10x_2$			
	Subjected to: $x_1 + 2x_2 \le 40$			
	$3x_1 + x_2 \ge 30$,			
	$4x_1 + 3x_2 \ge 60$			
	$x_1, x_2 \ge 0$			
	(OR)			
c.	Use simplex method to solve	15	CO1	K4
	Maximize $Z = 2x_1 + 5x_2$			
	Subjected to $x_1 + 4x_2 \le 24$			
	$3x_1 + x_2 \le 21$			
	$x_1 + x_2 \le 9$			
	$x_1, x_2 \ge 0$			
3.a.	Solve the given LPP	12	CO1	K4
	$Minimize \ Z = 3x_1 + x_2$			
	Subjected to $x_1 + x_2 \ge 1$			
	$2x_1 + 3x_2 \ge 2$			
	$x_1, x_2 \ge 0$			
b.	Differentiate between simplex method and dual simple method.	3	CO1	K2
	(OR)			

AY 22

(15 x 4 = 60 Marks)

Level

K2

c. Obtain the optimum solution of the given transportation problem.

15 СО2 К4

CO2

CO3

10

5

K4

K2

K3

					Suppry
	5	2	4	3	22
	4	8	1	6	15
	4	6	7	5	8
Demand	7	12	17	9	

4.a. Find the optimum assignment cost of the given problem.

	Persons				
		P1	P2	P3	P4
	J1	15	13	14	17
SC	J2	11	12	15	13
Jobs	J3	13	12	10	11
	J4	15	17	14	16

b. Explain the rules underlying the game theory.

(OR)

- c. In a bank, there is only one window. A solitary employee performs all the 8 CO3 service required, and the window remains continuously open from 7:00 AM to 1:00 PM. It has discovered that an average number 54 during the day and the average service time is 5 minutes per person, Determine,
 - (i) Average number of clients in the system
 - (ii) Average waiting time
 - (iii) The probability that a client has to spend more than 10 minutes in the system.
 - (iv) Average queue length.
- d. Use branch and bound technique to solve the following integer programming 7 CO3 K4 problem.

$$Max. Z = x_1 + x_2$$

subject to $3x_1 + 2x_2 \le 12$,
 $x_2 \le 2$

$$x_1, x_2 \ge 0$$
 and x_1, x_2 are integers

5.a. Find the minimum value of $f(x) = x_1^2 + 2x_1$ within the interval [-3, 4] using 15 CO4 K4 Fibonacci search method up to 4 iterations.

(OR)

b. Solve the non-linear programming problem 15 CO4 K4

Optimize
$$f(x) = 4x_1 - x_1^2 + 8x_2 - x_2^2$$

Subjected to $x_1 + x_2 = 2$
and $x_1, x_2 \ge 0$

--- End of Paper ---