Reg.

No

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fourth Semester Regular) Examinations, May - 2024

22BCHPC24004 - Numerical Methods in Chemical Engineering

(Chemical)

	()						
Time: 3 hrs		Maximum: 70 Marks					
	(The figures in the right hand margin indicate marks)						
PART – A		(2 x 5 = 10 Marks)					
Q.1	. Answer ALL questions	CO #	Blooms Level				
a.	What is Interpolation?	CO1	K1				
b.	Write a formula for Newton –Raphson method.	CO1	K1				
c.	Define initial value problem with an example.	CO3	K1				
d.	What is the disadvantage of multistep Method?	CO3	K2				
e.	What is standard five point formula.	CO4	K2				

PART - B

(15 x 4 = 60 Marks)

K3

Answer ALL questions			Blooms Level
2. a. Find the real root of $x^3 + x - 5 = 0$, correct up to four decimals by Itera method for five iterations.	tion 8	CO1	K3
b. Find a real root of $x^3 - x - 1 = 0$, by Newton – Raphson Method.	7	CO1	K3
(OR)			
c. Solve the system	8	CO1	K3
3x-6y-3z=-3 $2x+6z=-22$ $-4x+7y+4z=3$ by LU decomposition metho			
d. Find a real root of $x^3 + x - 5 = 0$, upto four significant figure by Bisec	tion 7	CO1	K3
Method.			
3.a. Evaluate $I = \int_0^1 \frac{1}{1+x} dx$ by Trapezoidal rule & Romberg's method with n	=10 8	CO2	K3
b. Given $f(x) = \cos x$, Find $f^1(\prod/4)$ with $h=(\prod/12)$ by using backward different	ence 7	CO2	K3
formula.			

- (OR)
- CO2 c. Using the following data, Estimate the value of f(-0.5) & f(0.5) by Hermite 8 interpolation.

Х	f(x)	$f^1(x)$
-1	1	-5
0	1	1
1	3	7

d.	Find the Jacobian matrix $F_1 = x^2 + y^2 - x = 0$		at point	(2,2)		7	CO2	K3
4.a.	Evaluate $y(2)$, if $y(x)$ is using R-k method and	•	•	•	by	8	CO3	K3

b. Given the initial value problem $y^1 = -2xy^2$ & y(0) = 1. Estimate y(0.4) by 7 CO3 K3 Adams bash- forth method of order 4.

	(OR)			
c.	Estimate y(0.4) for the initial value problem $y^1 = -2xy^2$; y(0)=1 by	8	CO3	K3
	Adams bash- forth predictor –corrector formula.			
d.	Using Runge –kutta method (R-K METHOD) y(0.2) and y(0.4)given $y^1 = x + y$, $y(0) = 1$.	7	CO3	K3
5.a.	Solve $\nabla^2 U = -10(x^2 + y^2 + 10)$, over the square mesh with sides $x = 0$ and $y = 0, x = 3, y = 3$ with $u = 0$ on the boundary and mesh length is 1 unit.	8	CO4	K3
b.	Solve $U_{xx} = U_t$ given $U(x,0) = 0$; $U(0,t) = 0$ & $U(1,t) = t$ &	7	CO4	K3
	U(x,0) = x(x-4).find the values of U up to $t = 5$ assume $h = k = 1$.			
	(OR)			
c.	Solve the equation $U_{xx} = U_t$ subject to $U(x,0) = 0$; $U(0,t) = 0$ &	8	CO4	К3
	U (1,t) = t for two time steps , by CRANK –NICHOLSON METHOD			
d.	Solve $Uxx = U_t$ Given $U(0, t) = 0$ & $U(1, t) = t$ & $U(x,0) = \sin \pi x$. By Bender-Schmidt formula. find the values of U up to $t = 4$. Assume $h = 1$	7	CO4	K3

--- End of Paper ---