Reg. No

QP Code: RM22BTECH209

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fourth Semester Regular) Examinations, May – 2024 **22BCSPE24001 – Introduction to Soft Computing** (CSE)

Time: 3 hrs Maximum: 70 Marks

1	ime. 3 ms	171	axiiiiuii	1. /U IVIAIKS
	$(The \ figures \ in \ the \ right \ hand \ margin \ indicate \ marks)$ $PART-A$		x 5 = 10) Marks)
O	.1. Answer <i>ALL</i> questions		C	CO# Blooms
a			(CO2 KL2
b	1 1 6			CO3 KL2
C	1			CO2 KL2
d e				CO3 KL1
r	PART – B	(1	5 v 4 –	60 Marks)
Answer ALL questions		Marks	CO#	Blooms Level
2. a.	Calculate the Error using Forward Pass with the data as Input={0.1, 0.5}, Weight={.15, .2, .25, .3, .35, .4, .45, .5}, Bias={.3, .5}, Output={0.2, 0.9}	10	CO2	KL2
b.	Update the weight using Backpropagation method.	5	CO1	KL2
	(OR)		gg.	
c.	Construct the Kohonen's Self Organizing Map (KSOM) to cluster the 4-given vectors [0 0 1 1], [1 0 0 0], [0 1 1 0] and [0 0 1 1]. The number of clusters to be formed is two.	10	CO2	KL2
	$W=\{0.18, 0.42, 0.6, 0.8, 0.9, 0.65, 0.5, 0.35\}$			
	Assume an initial learning rate 0.2.	_	GO1	1/1 0
d.	Explain the Learning Rules for Neural Network.	5	CO1	KL2
3.a.	Explain Sugeno Fuzzy Inference Systems.	7	CO2	KL2
b.	Briefly Explain about Activation Functions used in NN?	8	CO1	KL2
	(OR)			
c.	Discuss various types of selection procedures in GA	7	CO2	KL2
d.	Explain various types of binary-coded crossover techniques.	8	CO3	KL2
4.a.	Discuss the various Hybridization techniques in Soft computing?	8	CO2	KL2
b.	Describe the McCulloch-Pitts neuron model?	7	CO3	KL1
	(OR)			
c.	Discuss with example the backpropagation network with Fuzzy Logic and Genetic Algorithm?	7	CO2	KL2
d.	Explain Mamdani Fuzzy Inference Systems.	8	CO2	KL3
5.a.	Explain the different learning mechanisms used in Neural Networks?	7	CO2	KL2
b.	Explain Find the algebraic sum, algebraic product, bounded sum, and bounded difference of the given sets. $A=\{.1/2+.3/4+.5/6+.7/8\} \text{ and } B=\{.3/2+.2/4+.4/6+.5/8\}$ (OR)	8	CO4	KL3
c.	Find R o S using max-min composition. $X = \{2, 4, 6\}, Y = \{2, 4, 6\},$ $X = \{2, 4, 6\}, Y = \{2, 4, 6\},$	7	CO4	KL3
d.	$R = \{(x, y) \mid y = x + 2\}, S = \{(x, y) \mid x < y\}$ Explain graphically about Perceptron.	8	CO4	KL2
	End of Paper			