(The figures in the right hand margin indicate marks)			
PART – A	(2 x 5 =	: 10 Ma	arks)
Q.1. Answer ALL questions		CO #	Blooms Level
a. Explain what is linearly ,non linearly and almost linearly separable with a suitable	e example	CO3	K2
b. What is residual errors? Give a suitable example.		CO1	K2
c. Write down the steps for calculating the ROC curve.		CO1	K2
d. Write down the algorithm for Gradient descent with linear regression.		CO2	K2
e. The regression coefficient of the regression equation of X on Y is 2.4 and Y or Are the regression coefficients consistent?	n X is 0.8.	CO1	K3
PART – B	(15 x 4	= 60 N	(arks)
Answer ALL questions	Marks	CO #	Blooms Level
2. a. Consider a dataset containing the following observations:	5	CO1	K3
XY			
2 5			
3 7			
4 9			
5 11			
6 13			
(i) Compute the slope and intercept of the linear regression line for th	e		
given dataset.			
(ii) Use the equation of the regression line to predict the value of Y whe	n		
X is 10.			
(iii)Calculate the coefficient of determination (R^2) for this regression mode	2		
and interpret its meaning in the context of the dataset			
b. Explain briefly logistic regression and find the loss function.	10	CO1	K2
(OR)	10		
c. X1 X2 X3 Y	5	CO1	К3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U		
4 5 6 15			
2 3 5 20			
Compute the coefficients (intercept and slopes) of the multiple linear regressio model and generate the regression line.	n		
d. Explain briefly Lasso and Ridge regularization and find the loss function on i	t. 10	CO2	K2
How elastic net regression is working			
3.a. Explain briefly how K-NN is used in the mentioned dataset: -	8	CO2	K3
Point A: (2, 3), Class: 0 Point B: (4, 4), Class: 1 Point C: (5, 5), Class: 1			
Point D: (7, 6), Class: 0 Point E: (6, 3), Class: 1			
Classify a new point, $F(5, 4)$, using the K-Nearest Neighbors algorithm with			
k=3 and the Euclidean distance metric. Determine the class label for point F.			
b. Explain briefly about linear regression with gradient descent approaches as we	11 7	CO2	K2
as write down the detailed steps and perform at least two iterations .	-		
· ·			

(OR)

QP Code: RM22BTECH211 Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester Regular) Examinations, May – 2024

22BCMPE24001 - Introduction to Machine Learning

Maximum: 70 Marks

AY 22

(CSE - AIML)

Reg. No

Time: 3 hrs

c.	Explain briefly how supervised, unsupervised learning, and reinforcement	5	CO2	К2
d.	learning works	10	CO2	K2
u.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	8 4 Class B			
	6 7 Class B			
	Explain briefly how SVM works on the modified dataset with two features, X1			
	and X2, and a target variable Y. Build a model with a Support Vector Machine			
	(SVM) classifier to classify the data points into two classes.			
1.a.	Given dataset: $X = [1,2,3,1,]$ and $Y = [1,3,2,4]$	12	CO2	K2
	(i) Compute the regression coefficients <i>B</i> 0 (intercept) and <i>B</i> 1 (slope)			
	for the linear regression model.			
	(ii) Calculate the standard errors for the regression coefficients <i>SEB</i> 0			
	and SEB1.			
	(iii) Use the t-test to determine whether each regression coefficient is			
	statistically significantly different from zero. Perform hypothesis			
	testing with a significance level of α =0.05.			
	(iv) Interpret the results of the hypothesis testing and discuss the			
	implications for the linear regression model.		CO3	WO.
b.	Explain the Wilcoxoin Rank-sum test.	3	CO2	K2
	(OR)			
	The data below shows the salaries in randomly selected adv. in two different	10	CO2	K3
	occupations (Education and Marketing)			
	Education: 22,40,18,25,15,23,16,19,21,30			
	Marketing:28,24,20,45,50,39,26,55,48,41,42			
	Use mann-whiteney test at 1%(-2.33) level of significance to test the median			
	salary in the field of education is lower than the median salary in the field of			
	marketing	_	2	
d.	Given the following data, Calculate the spearman's correlation coefficient and	5	3	K3
	interpret R.			
	$\begin{array}{c c} 4 & 9 \\ \hline 15 & 7 \\ \end{array}$			
	$\begin{array}{ c c c c }\hline 8 & 9 \\\hline 8 & 7 \\\hline \end{array}$			
	$\begin{array}{c c} \circ & 7 \\ \hline 15 & 4 \end{array}$			
			602	
ı.	Suppose we have four different teaching methods (A, B, C, and D) and we want	10	CO3	K3
	to determine if there is a significant difference in the exam scores of students			
	taught using these methods. The exam scores for each group are as follows:			
	Teaching Method A: [8, 8, 9, 9, 10] Teaching Method B: [7, 8, 8, 9 9]			
	Teaching Method C: [7, 7, 8, 8, 9] Teaching Method D: [8, 9, 9, 10, 10] Perform a one-way ANOVA to test the null hypothesis that there is no			
	significant difference in the mean exam scores among the four teaching			
	methods. Use a significance level of α =0.05.			
b.	What do you mean by ANN? Explain briefly about it.	5	CO4	K2
		5		
	(OR)			

c. Implement the XOR function using McCullah-pitts neuron (Consider the 8 CO4 K2 binary data)

X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

d. Consider the dataset:

Actual value	Predicted
	value
100	130
150	170
200	220
250	260
300	325

Explain the significance of each error metric (MSE, RMSE, RMSLE, MAE) in evaluating the performance of a regression model. Provide examples of scenarios where each metric would be preferred over others.

--- End of Paper ---

7 СО4 КЗ