CO2

5

K2

QP Code: RM22BTECH173

f=0.008

Reg.					
No					

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester - Regular) Examinations, May - 2024

22BMEPC24001 – Fluid mechanics and Hydraulic Machines

(Mechanical)

	(Mechanical)					
Time: 3	Time: 3 hrs Maximum:					
	(The figures in the right hand margin indicate marks)					
$PART - A (2 \times 5 =$						
Q.1. Answe	r ALL questions		CO#	Blooms Level		
a. State a	nd explain Newton's law of viscosity.		CO1	K1		
b. If the s	•					
c. State Bernoulli's equation with the assumption.						
d. Differe	entiate turbine and pump.		CO3	K2		
e. Explai	n priming.		CO4	K2		
	PART – B (15 x 4=60 Marks)					
Answer AN	Y FIVE the questions	Marks	CO#	Blooms		
carri grav	ctangular pontoon 10m long, 7m broad and 2.5m deep weighs 686.7 kN. It es an empty boiler weighing 588.6 N on its upper deck. The centre of ity of the boiler and the pontoon are their respective centres along a vertical Find the Metacentric height. Specific weight of sea water is 10.104KN/m ³ .	10	CO1	Level K3		
	ain different types of pressure measurement device. (OR)	5	CO1	K2		
wate	nverted differential manometer connected to two pipes A and B containing r as shown in figure. The fluid in manometer is oil of specific gravity 0.85. rmine the difference of pressure between A and B.	10	CO1	К3		
	100 cm 30 cm WATER					
	neat sketches, explain the conditions of equilibrium for floating bodies.	5	CO1	K2		
	orizontal venturimeter with inlet diameter 30 cm and throat diameter 15 cm	10	CO2	K4		
conn	ted to measure the flow of water. The reading of differential manometer ected to the inlet and the throat is 20 cm of mercury. Determine the rate of . Take Cd=0.98.					
	ne the equation of continuity. State the expression of continuity equation for ee-dimensional flow in different conditions. (OR)	5	CO2	K2		
-	pe line AB of diameter 300 mm and of length 400 m carries water at the of 50litres/s. The flow takes place from A to B where point B is 30 metres	10	CO2	K4		

above A. Calculate the pressure at A if the pressure at B is 19.62 N/cm². Take

d. Explain different major and minor losses in pipe flow.

4.a.	A pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing at	10	CO3	K4
	the rate of 700 litres/s under a head of 30 m. The buckets deflect the jet through			
	an angle of 160°. Determine the power given by water to the runner and the			
	hydraulic efficiency of the turbine. Assume $Cv = 0.98$			
b.	Explain different parts of a pelton turbine with a diagram.		CO3	K2
	(OR)			
c.	Sketch the velocity vector diagram of both inlet and outlet for a jet striking	10	CO3	K3
	tangentially to an unsymmetrical moving curved vane. Label all velocity			
	components.			
d.	Explain different characteristic curves of the turbine.		CO3	K2
5.a.	The internal and external diameters of the impeller of a centrifugal pump are	10	CO4	K4
	200 mm and 400 mm respectively. The pump is running at 1200 RPM. The vane			
	angles of the impeller at the inlet and outlet are 20° and 30° respectively. The			
	water enters the impeller radially and velocity of flow is constant. Determine the			
	work done by the impeller per unit weight of water.			
b.	State the main parts of a centrifugal pump with neat sketch.	5	CO4	K2
	(OR)			
c.	A Kaplan turbine develops 24647.6 kW power under ahead of 39m. Assuming a	10	CO4	K4
	speed ratio of 2, flow ratio of 0.6, diameter of the boss equal to 0.35 times the			
	diameter of the runner and an overall efficiency is 90%. Determine the diameter			
	and the speed of the turbine.			
d.	Explain different efficiencies used for the performance analysis of centrifugal	5	CO4	K2
	pump.			

--- End of Paper ---