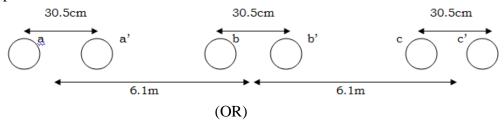
Reg. No

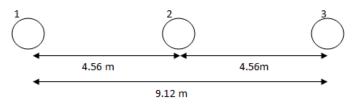
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Fourth Semester Regular) Examinations, May – 2024 22BELPC24003 / 22BEEPC24003 – Electrical Power Transmission and

Distribution

(EE & EEE)


Time: 3 hrs		Maximum: 70 Marks		
	and margin indicate marks)			
PART – A		$(2 \times 5 = 10 \text{ Marks})$		
Q.1. Answer ALL questions		С	CO #	Blooms Level
a. How does skin effect vary with conductor materia	al?	C	201	K2
b. Why do we find line to neutral capacitance in a 3	-phase system?	C	201	K2
c. What is sag tamplate?		C	203	K1
d. Mention two advantages of ring main system.		C	CO4	K 1
e. Why is it necessary to earth neutral?		C	CO5	K2

PART – B


(15 x 4 = 60 Marks)

Answ	er ALL questions	Marks	CO #	Blooms Level
2. a.	Derive an expression for the capacitance of a 1-phase overhead transmission line.	8	CO1	K2
b.	A 3-phase single circuit bundled conductor line with two subconductors per	7	CO1	K3

phase has horizontal spacing with 6.1m between the center lines of adjacent phases. The distance between the sub-conductors of each phase is 30.5 cm and each sub-conductor has a diameter of 2.54cm. Find the inductance per phase per km of line.

- c. Derive an expression for the inductance per phase of a 3-phase overhead 8 ^{CO1} transmission line with conductors are unsymmetrical spacing.
- d. A 3-phase, 50 Hz, 132 kV overhead transmission line has conductors in a horizontal plane 4.56 m apart. Conductor diameter is 22.4 mm. If the line length is 100km, calculate the charging current per phase assuming complete transposition.

3.a. Explain different types of transmission line.

5 СО2 К2

CO1

7

K2

K3

b.	Derive an expression for the Hyperbolic form of the equation of a long transmission line.	10	CO2	K2
	(OR)			
c.	What is series ad shunt compensation?	5	CO2	K1
d.	A 50Hz, 3-phase 100km long transmission line has a total resistance of 35 Ω , series reactance of 140 Ω and shunt admittance (line to neutral) 930 X 10 ⁻⁶ mho. It delivers 40 MW at 220Kv at 0.9 p.f. lagging. Using the nominal- π method, determine the following:	10	CO2	K3
	(i) A, B, C, and D constants of the line (ii) Sending end voltage (iii) Sending end current (iv) Sending end power factor (v) Voltage regulation (vi) Transmission efficiency of the line.			
4.a.	Obtain expressions for the sag and maximum tension when the supports are at the same level.	7	CO3	K2
b.	A transmission line has a span of 275 m between level supports. The conductors has an effective diameter of 0.196 cm and weighs 0.865 kg/m. its working tension is 4030kg. If the conductor has an ice coating of radial thickness 1.27 cm and is subjected to a wind pressure of 3.9 gm/cm2 of projected area, calculate sag. Weigh of 1 cc of ice is 0.91 gm. (OR)	8	CO3	K3
с.	Describe the radial system and ring main system of distribution.	7	CO3	K2
d.	An insulator string has three units each having a safe working voltage of 15 kV. The ratio of unit self-capacitance to stray capacitance of earth is 10:1. Calculate (i) The maximum safe working voltage (ii) The string efficiency.	8	CO3	K3
5.a.	Write short notes on touch and step voltage.	7	CO5	K1
b.	 A 2-wire DC distributor 300 m long is uniformly loaded with 2 A/m. The resistance of a single wire is 0.3 Ω/km. If the distributor is fed at one end, calculate (i) Voltage drop up to a distance of 225 m from the feeding pt. (ii) Maximum voltage drop. 	8	CO4	K3
	(OR)			
c.	With a neat diagram explain Kelvin's law for conductor size. What are its limitations?	8	CO4	K2
d.	Write short notes on Neutral grounding.	7	CO5	K1

--- End of Paper ---