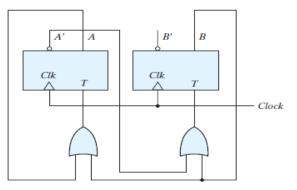
Reg.

No

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Fourth Semester Regular) Examinations, May – 2024

21BECPC24001 - Digital Electronics


(ECE)

Time: 3 Hours	Maxin	Maximum: 70 Marks		
(The figures in the right-hand margin indicate marks) PART – A (2 × 5 = 10 Marks)				
Q.1. Answer ALL questions.		CO #	Blooms Level	
a. Find the radix of the number system where $24 + 17 = 40$.		CO1	K1	
b. Show that the dual of the exclusive-OR is equal to its complement.		CO1	K1	
c. Convert the following expression into a standard product of sums. Y = A(A + B + C)		CO2	K2	
d. Write a characteristic equation and excitation table for the <i>T</i> flip-flop.		CO3	K1	
e. How many $16K \times 1$ RAMs are required to obtain a memory with a word cap 64K? The word length is eight bits.	pacity of	CO4	K3	
PART – B	(15 × 4	l = 60 N	Marks)	
Answer ALL questions.	Marks	CO #	Blooms Level	
 2.a. Carry out the following additions: (i) (+13, -11) using 1's complement notation. (ii) (-15, +9) using 2's complement notation. 	8	CO1	K3	
 b. Simplify the following Boolean functions to a minimum number of literals. (i) x(x' + y) (ii) xy + x'z + yz 	7	CO1	К3	
(OR)	_	~~~		
 c. Construct logic circuit using AND, OR, and NOT gate for the following Boolean function: (i) Y = (A + B)(A' + B') (ii) Y = (A + B)(C' + D')(A' + C) 	8	CO2	К3	
 d. In a tabular form, write the "2421" code and "Excess-3" code of decimal digit "0 to 9". What are the special properties of these codes? 	7	CO1	K2	
3.a. Simplify the following Boolean function using a four-variable K-map: $F(A, B, C, D) = \sum (0, 1, 3, 4, 5, 7, 9, 11, 15)$ and then, realize the simplified functions using logic gates.	10	CO2	K3	
b. Reduce the Boolean expression $A + B[AC + (B + \overline{C})D]$ (OR)	5	CO1	K3	
c. What is a full adder circuit? Draw its truth table. Design a full adder circuit using two half adder circuits and an 'OR' gate.	10	CO2	K3	
d. Implement the following Boolean function with a multiplexer. $F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$	5	CO2	К3	
4.a. A magnitude comparator is a combinational circuit that compares two	8	CO2	K3	

the comparison is specified by three binary variables that indicate whether A > B, A = B or A < B. Determine the algorithm to implement this comparator and draw a 2-bit magnitude comparator using the combinational circuit. CO2 K3 b. Construct the 3×8 decoder using 2×4 decoders. 7 (OR) CO3 K2 c. What is the race-around condition? How is it eliminated in a master-slave JK8 flip-flop? 7 CO3 K3 d. Explain how a *J*-*K* can be constructed using *D* flip-flop. CO3 K3 Design of a synchronous Mod-6 counter using JK flip-flops. 10 5.a. 5 CO3 K2 What is a shift register? Explain the principle of a 4-bit serial-in, parallel-out, b. shift register.

(OR)

c. Derive the state table and the state diagram of the sequential circuit shown in 10 CO3 K3 the figure.

d. Design a combinational circuit using a ROM. The circuit accepts a 3-bit 5 CO4 K3 binary number and generates an output binary number equal to the square of the input number.

--- End of Paper ---