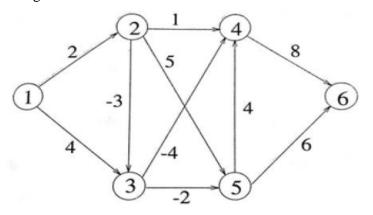

QP Coo	le: RM22BTECH181	Re No	-]	AY 22
	UNIVER		(GIE	ΓU	NIV	ERS	ITY,	GU	NUI	PUR	- 765022	1	
		В. Г		•				0				ions, May		
	22BCSPC24002/22BCMPC24002/22BCDPC240 Design and Analysis of Algorithms									002				
					Ľ	60-8	•	E/AI	5		· ·	,		
Time	3 hrs		•		•			<u> </u>	• •				num: 70	Marks
PA	RT – A	(The f	Igures	in ti	ne riş	ght h	and n	nargin	indi	cate r	narks) (2 x 5 =	= 10 Ma	arks)
Q.1. A	Answer ALL quest	ions											CO #	Blooms Level
	arrange the followi $^2 \log n, \sqrt{n, n^3, 101}$	-		om th	ne lov	west a	symp	totic c	order	to the	highe	st. 3 ⁿ , 7n,	CO1	K1
	Differentiate betwe	-		d and	l Dijl	kstra .	Algor	ithm.					CO3	K2
	Define Spanning tro	ee. Find t	he nui	nber	of sp	pannii	ng tre	e poss	ible f	or a c	omple	te graph of	CO1	K2
d. D									CO3	K3				
	Vrite the relaxation done						-		hat a	re the	numb	er of times	CO3	K1
PAR	PART – B (15 x 4 = 60 Marks)													
<u>Answ</u>	er ALL questions											Marks	CO #	Blooms Level
2. a.	Solve the following	ing recurr	ence r	elatio	on fo	r n>1						8	CO1	K3
	(a)T (n) = 9T (n/	$(3) + n^2 \log^2(1)$	gn	(b)T	(n) =	= 8T (n/2) +	n ³ log	n					
b.	Discuss the impo	ortance of	f the v	ariou	is asy	ympto	otic ef	ficien	cy cla	asses?	Expla	uin 7	CO1	K1
	Big O, Big Omeg	ga and Bi	g Thet	a asy	mpto	otic no	otatio	ns wit	h suit	able e	xamp	le.		
				(OR	<i>,</i>									
c.	Design an algori						-		-				CO1	K3
	Discuss the Be	st case	worst	case	e and	d ave	erage	case	effic	iency	of tl	nis		
1	algorithm.			1						.1	1 (777 ()	7	CO1	K4
d.	Solve the follow $T(r/2) + r$. Here	•		relati	on u	sing i	recurr	ence t	ree m	nethoc	i. I(n)) = 7	COI	Κ4
3.a.	T(n/2) + n. Here Write the Morge			and a	nolv	an the	hast	0000 0	nd w	oret a	asa tir	ne 8	CO2	K 1
J.a.	Write the Merge complexity.	sort algo			mary	se uit	0051-	east i	unu w	0151-0	ase til	nc 0	202	
b.	· ·	an code f	or the	strin	g "G	AND	HI"	where	the o	liffere	ent tvr	bes 7	CO2	K1
0.	. Generate Huffman code for the string "GANDHI", where the different types 7 CO2 K1 of character and their frequency are given as follow.													
		A B	C	D	E	G	Н	Ι	N]				

Charact	er	A	В	С	D	E	G	Н	Ι	N
Frequen	cy	15	10	6	8	12	14	4	6	20
(OR)										


c. Write the Maxheapify algorithms. Explain with Suitable example. 7 CO2 K2

d.	Apply quick sort algorithm to sort the list E, X, A, M, I, N, A, T, I, O, N in	8	CO2	K3
	alphabetical order. Draw the tree of recursive calls made			
4.a.	Write and explain the Dijkstra algorithm for finding single source shortest path	7	CO3	K2
	for a weighted directed graph.			
h	Compute the Minimum-cost Spanning Tree for the Graph given below using	8	CO3	К3

b. Compute the Minimum-cost Spanning Tree for the Graph given below using 8 CO3 K3 Kruskal's Algorithm.

c. Find the shortest path from node 1 to every other node in the given graph using 8 CO3 K4
Bellman-Ford algorithm

d.	Write and explain the Floyd-Warshall algorithm for finding all pair shortest path for	7	CO3	K2
	a weighted directed graph.			
5.a.	Define Backtracking approach. Write the state space tree to solve 4-queen Problem.	7	CO4	K1
	Using Back Tracking.			
b.	Write and explain Rabin Karp Pattern matching algorithms with an example.	8	CO4	K2
	(OR)			
c.	Define P, NP, NP complete and NP-Hard problems. Give examples of each.	8	CO4	K2
d.	For KMP-Matcher compute the prefix function π and solve for the Text T=	7	CO4	K3
	"ababbabbabbabbabbabb" when the pattern is $P = \{a, b, b\}$.			

--- End of Paper ---