

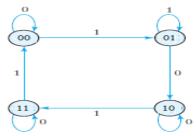
GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester Regular) Examinations, December - 2023

21BCSES23004 – Digital Electronics

(CSE, CSE(AIML), CSE(DS))

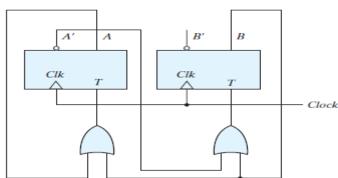
Time: 3 hrs Maximum: 70 Marks


Answer all questions

_	(The figures in the right hand margin indicate marks)	<i>(</i> 2 =	4035	
$PART - A (2 \times 5 =$			= 10 Marks)	
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level
a.	Convert (597) ₁₀ to BCD code.		CO1	K2
b.	Show that the dual of the exclusive-OR is equal to its complement.		CO1	K1
c.	Consider the function $f(x, y, z) = \sum (2, 3, 4, 6, 7)$. Derive the canonical sum of p	roducts	CO2	K2
	for the function using minterm.			
d.	What do you mean by sequential circuit? Hence distinguish between syncl	nronous	CO3	K2
	sequential circuits and asynchronous sequential circuits.			
e.	How many 16K × 1 RAMs are required to obtain a memory with a word capa	acity of	CO4	К3
	64K? The word length is eight bits.			
PART – B			4 = 60 Marks)	
Answer ALL questions		Marks	CO#	Blooms Level
2. a	Construct logic circuit using AND, OR, and NOT gate for the following Boolean function: (i) $Y = (A + B)(A' + B')$ (ii) $Y = (A + B)(C' + D')(A' + C)$	8	CO2	К3
b	. Subtract 101011 ₂ from 111001 ₂ using 1's complement and 2's complement methods.	7	CO1	К3
	(OR)			
c	. Apply DeMorgan's theorem to prove that	8	CO2	К3
	$A\overline{B} + \overline{C}D + EF = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$ Draw the corresponding logic circuit.			
d	 Carry out the following additions: (i) (+13, -11) using 1's complement notation. (ii) (-15, +9) using 2's complement notation. 	7	CO1	К3
3.a	Simplify the following Boolean function using K-map: $F(A, B, C, D) = \sum (4, 5, 6, 7, 12, 13, 14)$ and then, write the simplified function in SoP and PoS form.	10	CO2	К3
b	. Implement the Boolean function $F(x, y, z) = \sum (1, 2, 6, 7)$ with a multiplexer. (OR)	5	CO2	К3
c	. What is a full adder circuit? Draw its truth table. Design a full adder circuit using two half adder circuits and an 'OR' gate.	10	CO2	К3

- d. Implement the following Boolean function with a multiplexer. 5 CO2 K3 $F(A,B,C,D) = \sum_{i=1}^{n} (1,3,4,11,12,13,14,15)$
- 4.a. Draw the circuit diagram of a 2-bit by 2-bit binary multiplier using half- 8 CO2 K3 adders and logic gates. Explain its operation.
 - b. A *PN* flip-flop has four operations: no change, clear to '0', set '1', and 7 CO3 K3 complement; when inputs *P* and *N* are 00, 01, 10, and 11 respectively. Write the excitation table and characteristics equation of the *PN* flip-flop and realize the flip-flop using logic gates.

(OR)


- c. A magnitude comparator is a combinational circuit that compares two 8 mumbers A and B, and determines their relative magnitudes. The outcome of the comparison is specified by three binary variables that indicate whether A > B, A = B or A < B. Determine the algorithm to implement this comparator and draw a 2-bit magnitude comparator using the combinational circuit.
- d. Describe the construction and operation of a master-slave flip-flop. 7 CO3 K3
- 5.a. Design the sequential circuit specified by the state diagram of the figure using $10 \, \text{CO}_3 \, \text{K}_3$ JK flip-flops.

b. Design a combinational circuit using a ROM that accepts 3-input and 5 CO4 K3 produces its 1's complement as output.

(OR)

c. Derive the state table and the state diagram of the sequential circuit shown in 10^{CO3} K3 the figure.

d. Design a combinational circuit using a ROM. The circuit accepts a 3-bit 5 CO4 K3 binary number and generates an output binary number equal to the square of the input number.

-- End of Paper ---