QP Cod	e:RD22BTECH087	Reg. No											AY 22
		(B. Tech (1	GIET U Third So CHPO	emest	ter Re	gular) Exa	mina	tions,	Decei	mber		
encer	LENCE - OUR RESERVCE					(Chei				curcu	14410		
Tin	ne: 3 hrs							,		Max	kimun	n: 70 M	arks
	(Th	e figures i			ll que and n			cate n	narke)			
PAF	RT – A	te figures i	n uic ii	igni n	anu n	iai gili	mui		liai Koj		2 x 5 =	= 10 Ma	rks)
Q.1. A	nswer ALL questions											CO #	Blooms Level
	ne specific gravity of hy ale and API scale.	drocarbon	oil is 0	.88 at	288 K	. Calc	ulate	its va	lue in	Baume	e	CO2	K4
b. W	hat is the density of CC	D ₂ at NTP?										CO2	K2
c. St	ate Roult's law and Her	nry's law.										CO1	K2
d. Th	ne GCV of gaseous n-bu	utane is 28	80kj/mo	ol at 2	98 K.	Calcu	late N	ICV ir	n kJ/m	ol and		CO2	K3
	/kg units using latent he		•										
	fferentiate adiabatic rea		1					U	ature.			CO1	K3
								p					
PART	$\Gamma - \mathbf{B}$									(15 x 4	= 60 N	(arks)
<u>Answe</u>	r ALL questions									N	farks	CO #	Blooms Level
2. a.	A body weighs 1 kg in specific gravity of the l	-	; in wate	er and	0.85	kg in a	ı liqui	d. Wł	nat is t	he	7	CO2	К3
b.	500 cubic meters of 30 API fuel oil. What is density of water at 288	the densit	ty of t	he res							8	CO2	K4
			(OR)										
c.	An aqueous solution of is 1.16 g/ml. 500 ml of What will be the molar	f water of	density	1 g/m	l is ac	lded to	o 1 lit	re of s	solutio		7	CO2	К3
d.	A liquid mixture conta C (MW=56) in which weight % of B is 25% Calculate the total num	A and B a	re prese e of miz	ent in xture	the m is four	ole ra	tio of	1.5:1	and t	he	8	CO2	K4
3.a.	The Antoine constant C= 56.56. P ^s s in kPa a (i) The vapour p (ii) The normal	nts for n- nd t is in F pressure of	heptane K. Calcu n-hepta	e are ilate ane at	A=1 325 K		7, b=	=2911	.32 a	nd	7	CO2	K4
	(ii) The normal	bonnig pe	unt OI II	-nepta	uic								

 b. An aqueous solution of acetaldehyde contains 2% acetaldehyde by weight. The partial pressure of acetaldehyde over the solution is found to be 41.4 kPa at 367 K. What will be the partial pressure over a 0.1 molal solution at the same temperature?

(OR)

CO2 K4 7 c. Bottled liquid gas containing n-Butane (50 mol %), Propane (45 mol %) and Ethane (5 mol %) with vapour pressures at 30° C in bar as 3.4, 10.8, 46.6 respectively sold for household use. Determine the pressure of the system and the equilibrium vapour composition at 30° C. CO2 K2 d. Define the terms (i) Heat capacity (ii) Specific heat capacity (iii) mean heat 8 capacity of single gas (iv) heat capacity of gas mixtures (v) mean heat capacity of gas mixture. CO2 K4 Propane is burned with excess air to ensure complete combustion. If 55 kg of CO_2 4.a. 8 and 15 kg of CO are obtained when propane is completely burned with 500 kg air, determine: the mass of propane burnt in kg and the percent excess air.

8

CO2

K2

- b. An aqueous solution of Na₂CO₃ contains 15% carbonate by weight. 80% of 7 ^{CO2} ^{K3} the carbonate is recovered as Na₂CO₃.10H₂O by evaporation of water and subsequent cooling to 278 K. The solubility of Na₂CO₃ at 278 K is 9% (weight). On the basis of 100 kg of solution treated, determine the following:
 - (i) the quantity of crystal formed
 - (ii) the amount of water evaporated

(OR)

- c. Soap as produced contains 50% moisture on a wet basis. Before it can be 8 CO2 K4 pressed into cake for sale, the moisture would be reduced to 20%. How many 100g cakes can be pressed from 1000 kg of wet soap?
- d. Sulphur trioxide gas is obtained by the combustion of iron pyrites (FeS₂) 8 CO2 K3 according to the following reaction:

 $4FeS_2 + 15O_2 \longrightarrow 2Fe_2O_3 + 8SO_3$

- i) How many kilograms of pyrites are burned to obtain 100 kg of SO₃?
- ii) How many kilograms of oxygen are consumed in the production of 50 kg of SO₃?
- 5.a. Obtain the empirical equation for calculating the heat of reaction at any 15 ^{CO3} ^{K4} temperature T (K) for the following reaction:

 $CH_4(g)+C_2H_6(g) \longrightarrow C_3H_8(g)$

Data: Standard heat of reaction at 298 k = -82.66 kJ/mol,

Sp. Heat = $a + bT + cT^2$, kJ/(mol.K)

Component	а	bx10 ³	C x10 ⁶
CH ₄	19.2494	52.1135	11.973
C ₂ H ₆	4.1261	155.0213	81.5455
C ₃ H ₈	4.2227	306.264	158.6316

Using the same expression, calculate the heat of reaction at 600 ⁰C.

(OR)

b. Obtain an empirical equation for calculating the heat of reaction at any 15 CO3 K4 temperature T (in K) for the reaction:

$$CO_{(g)} + 2 H_{2(g)} \rightarrow CH_3 OH_{(g)}$$

Data: $\Delta H_R^0 = -90.41 \ kJ/mol$

Component	a	$b \times 10^3$	$c \times 10^{6}$
$CO_{(g)}$	29.0277	-2.8165	11.6437
$H_{2(g)}$	28.6105	1.0194	-0.1476
$CH_3OH_{(g)}$	21.137	70.843	25.86

Also calculate the standard heat of reaction at 700 K.

--- End of Paper ---