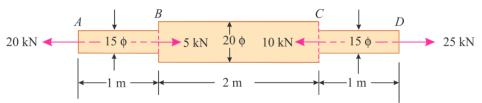
Reg.

No

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Third Semester Regular) Examinations, December - 2023


22BMEPC23002 - Mechanics of Solids

Time: 3 hrs		Maximum: 70 Marks		
(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 M			0 Mai	rks)
Q.1	. Answer ALL questions	(CO #	Blooms Level
a.	What is a composite section? Explain the procedure for finding the stresses develo	oped	CO1	K1
	when a composite section is subjected to an axial load.			
b.	Define the term Poisson's ratio. Write the expressions for strains in the three princ	cipal	CO1	K1
	directions.			
c.	What do you mean by pressure vessel or shell? What types of stress acts upon the	m?	CO2	K1
d.	A steel wire of 5 mm diameter is bent into a circular shape of 5 mm radius.		CO3	K1
	Determine the maximum stress induced in the wire. Take $E = 200$ GPa.			
e.	Why hollow circular shafts are preferred when compared to solid circular shafts?		CO4	K1

PART – B

(15 x 4 = 60 Marks)

Answer ALL questions		Marks	CO #	Blooms
				Level
2. a.	A steel bar ABCD 4 m long is subjected to forces as shown in Fig. Find the	8	CO1	K2

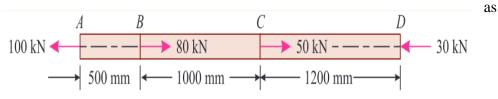
elongation of the bar. Take E for the steel as 200 GPa.

- CO1 b. A bar 12 mm in diameter is acted open by an axial load of 20kN. The change 7 K2 in diameter is measured as 0.003 mm. Determine the
 - (i) poisons ratio
 - (ii) the modulus of Elasticity and the bulk modulus

The value of the modulus of rigidity is 80 GPa

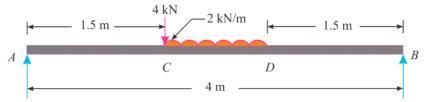
(OR)

c. A brass bar having cross-sectional area of 500 mm² is subjected to axial forces

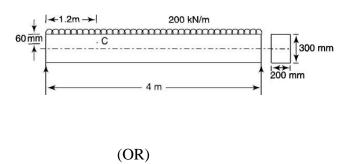

CO1 K2

K2

CO3


K2

8


shown in Fig. Find the total elongation of the bar. Take E = 80 GPa.

- d. A circular rod of 25 mm diameter and 500 mm long is subjected to a tensile 7 CO1 K2 force of 60 kN. Determine modulus of rigidity, bulk modulus and change in volume if Poisson's ratio =0.3 and Young's modulus $E = 2 \times 105 \text{ N/mm}^2$.
- 3.a. A rectangular bar of cross-sectional area 10000 mm² is subjected to an axial
 7 CO2
 load of 20kN. Determine the normal and shear stresses on a section which
 is inclined at an angle of 30 degree with normal cross-section of the bar.
 - b. A cast iron cylinder of 200 mm inner diameter and 12.5 mm thick is closely 8 CO2 K2 wound with a layer of 4 mm diameter steel wire under a tensile stress of 55 MN/mm². Determine the stresses setup in the cylinder and steel wire if water under a pressure of 3MN/mm² is admitted in the cylinder. Take $E_{CI} = 100$ GN/m²; $E_s = 200$ GN/m²; $\mu = 0.25$.
 - (OR)
 - c. A simply supported beam of 4 m span is carrying loads as shown in Fig. 7 CO2 K2
 Draw shear force and bending moment diagrams for the beam.

d.Deduce expressions for stresses on an inclined plane in a body subjected to8CO2K2a bi-axial stress condition.

4.a. The Figure shows a simply supported 200 mm wide 300 mm deep and 4 m15 long beam. Determine the bending moment and bending stress at the pointC which is 60 mm below the top surface and 1.2 m from the left support.

b.	A simply supported beam of 2m span carries a uniformly distributed load of	15	CO3	K2
	140kN per mover the whole span. The cross-section of the beam is a T-			
	section with a flange width of 120 mm, web and flange thickness of 20mm			
	and overall depth of 160 mm. Determine the maximum shear stress in the			
	beam and draw the shear stress distribution for the section.			
5.a.	The outer and the inner diameters of a hollow steel shaft are 120 mm and 60	8	CO4	K2
	mm respectively. The shaft transmits 800 kW at a speed of 400 rpm while an			
	end thrust of 70 kNacts on the shaft. Determine the bending moment which			
	can safely be applied to the shaft if the maximum principal stress does not			
	exceeds 80 MPa.			
b.	A solid circular shaft of 100 mm diameter is transmitting 120 kW at 150	7	CO4	K2
	rpm. Find the intensity of shear stress in the shaft.			
	(OR)			
c.	A solid steel shaft has to transmit 100kW at 160 rpm. Taking allowable	8	CO4	PO2
	shear stress as 70 MPa, find the suitable diameter of the shaft. The			
	maximum torque transmitted in each revolution exceeds the mean by 20 %.			
d.	A hollow shaft is to transmit 200kW at 80 rpm. If the shear stress is not to	7	CO4	K2
	exceed 60 MPa and internal diameter is 0.6 of the external diameters, find the			
	diameters of the shaft.			

--- End of Paper ---