QP Coo	de:RD22BTECH083 Reg. No		AY 21	/ AY 22				
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Third Semester Regular) Examinations, December – 2023 21BMEPC23003 / 22BMEPC23003 – Material Science								
Ti	me: 3 hrs	Invinun	•• 70 M	orke				
	Time: 3 hrs Maximum: 70 Marks (The figures in the right hand margin indicate marks)							
PART - A (2 x 5 = 10]								
Q.1. A	Answer ALL questions		CO #	Blooms Level				
	What is atomic packing efficiency, and how does it relate to the arrangement of a crystal lattice?	toms in	CO1	K2				
	Differentiate between homogeneous and heterogeneous nucleation during oblidition process.	ng the	CO1	К2				
c. V	Why are alloys commonly used in engineering applications?		CO2	K2				
d. V	Vrite the process involved in Stress Relief Annealing.		CO3	K2				
e. V	What are the factors that control the strength of ceramics?		CO4	K1				
PART – B (15 x 4 = 60 Marks)								
Answ	er ALL questions	Marks	CO #	Blooms Level				
2. a.	Explain the various types of crystal system with a neat sketch and example.	7	CO1	K2				
b.	Draw the following plane and direction in FCC structure.	8	CO1	K3				
	i) (2 1 2) (-2 1 0) (1 ½ 1)							
	ii) [1 2 1] [1 -2 1] [1 ½ 1]							
	(OR)							
с.	Define packing factor and obtain the packing factor for the	7	CO1	K2				
	(i) SC (ii) BCC (iii) FCC.							
d.	Find the number of atoms associated in each BCC, FCC and HCP unit cells.	8	CO1	K3				
	Calculate the equilibrium number of vacancies per cubic meter for copper at							
	100° C. The energy for vacancy formation is 0.9 eV/atom; the atomic weight							
	and density for copper are 63.5 g/mol and 8.45 g/cm3, respectively. Take							
	Avogadro's number as 6.023 x 10 23 atoms/mol. $K = 8.62*10 - 5 \text{ eV/atom}$.							
3.a.	Explain the factors affecting solid solubility of a solution (or) Explain Hume	7	CO2	K2				
	Rothery rules.							
b.	For a 0.35 wt% C plain carbon steel at a temperature just below the eutectoid	8	CO2	K3				
	temperature determine:							

i) Fraction of total ferrite and cementite phase.

ii) Fraction of the pro-eutectoid ferrite and pearlite.

Fraction of eutectoid ferrite.

(OR)

c.	Explain Phase transformation with a suitable example.	7	CO2	K2
d.	A binary alloy having 28 wt% of Cu and balance Ag solidifies at 779°C. The	8	CO2	K3
	solid consists of two phases α & $\beta.$ Phase α has 8% Cu whereas phase β has			
	8% Ag at 779°C. At room temperature these are pure Ag and Cu respectively.			
	Sketch the phase diagram. Label all fields & lines. Melting points of Cu and			
	Ag are 1083°C and 960°C respectively. Estimate the amount of α & β in the			
	above alloy at 779° C & at room temperature.			
4.a.	Draw the $T - T - T$ diagram for eutectoid steel & amp. Explain the phase	7	CO3	К3
	transformations in brief.			
b.	Explain the concept of plastic deformation by slip and twinning mechanism	8	CO3	K2
	with neat diagrams. Also write the difference between the two mechanisms.			
	(OR)			
c.	Sketch and explain any two types of cast iron, with microstructure,	7	CO3	K3
	composition and properties.			
d.	How does the presence of alloying elements affect the equilibrium cooling	8	CO3	K2
	behaviour, microstructure, and properties of steel?			
5.a.	Write short notes on:	7	CO4	K2
	i) Cermets			
	ii) Theory of refraction and absorption,			
b.	Define composite material. Give the classification based on matrix and	8	CO4	K2
	Reinforcement.			
	(OR)			
c.	Write short notes on:	7	CO4	K2
	i) Metal matrix composites			
	ii) Fibre reinforced plastic			
d.	Write the difference between thermoplastics and thermo setting plastics.	8	CO4	K2

--- End of Paper ---