QP Code:RD22BTECH053	Reg. No										AY 22
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Third Semester Regular) Examinations, December – 2023 22BMEPC23001 – Engineering Thermodynamics (Mechanical) Maximum: 70 Marks								arks			
		Answer	all que	estions	5						
(The figures in the right hand margin indicate marks)											
$\mathbf{PART} - \mathbf{A} \tag{2 x 5}$					$2 \ge 5 =$	= 10 Marks)					
Q.1. Answer ALL questio	ns									CO #	Blooms Level
a. Define dryness fraction. What is the value of dryness fraction for dry steam?							CO1	K2			
b. Calculate the enthalpy of 1kg steam at a pressure of 8 bar and dryness fraction 0.8. How					ow	CO1	K3				
much heat would be r	required to rais	e the 2kg of	this ste	eam fr	om wa	ater at	20^{0} C?)			
c. Draw the T-s and P-V diagram of a Reheat-Rankine cycle.						CO2	K2				
d. Find out the efficiency of the diesel cycle have compression ratio and cut off ratio of 16					16	CO3	K2				
and 6 respectively.											
e. Describe swept volum	ne and clearand	ce factor.								CO4	K2
PART – B (15 x 4 = 60 Marks)											

Answer ALL questions		Marks	CO #	Blooms Level
2. a.	A rigid closed tank of volume 3 m^3 contains 5 kg of wet steam at a pressure of 200 kPa. The tank is heated until the steam becomes dry saturated.		CO1	K2
	Determine the final pressure and the heat transfer to the tank.			
b.	Describe P-V and T-S diagram of reheat Rankine cycle.	5	CO1	K2
	(OR)	-		
с.	10 kg of saturated liquid water at 1bar is heated at constant pressure until the	10	CO1	K2
	temperature becomes 200 °C. Calculate:			
	(i) The initial and final volumes			
	(ii) The work done			
	(iii) The heat transfer			
d.	Explain water to steam conversion process in a T-S diagram.	5	CO1	K2
3.a.	Steam enters the high pressure turbine of a reheat cycle at 10 bar and 500°C.	10	CO2	K3
	The reheat temperature and pressure are 450°C and 5 bar respectively. The			
	turbine and pump efficiency are 90% and 85% °C respectively. Find the			
	efficiency of reheat cycle, if condenser pressure is 0.4 bar.			
b.	Explain Feed Water Heater.	5	CO2	K2
	(OR)			
с.	A steam power plant operates between a boiler pressure of 4MPa 300 °C and	10	CO2	K3
	a condenser pressure of 50 KPa. Determine the thermal efficiency of the			
	cycle.			
d.	Explain the impact of mean temperature of heat addition.	5	CO2	K2
4.a.	An engine working on the Otto cycle is supplied with air at 0.1 MPa, 35 °C.	10	CO3	K3
	The compression ratio is 8. Heat supplied is 2100 kJ/kg. Calculate the maximum pressure and temperature of the cycle, the cycle efficiency and the			

mean effective pressure.

1	E 1 : D (C 1	~	CO3	K2
b.	Explain reverse Brayton Cycle.	5	005	K2
c.	(OR) An air standard limited pressure cycle has a compression ratio of 15 and compression begins at 0.1 MPa, 40°C. The maximum pressure is limited to 6 MPa and the heat added is 1.675 MJ/kg. Compute (i) the heat supplied at constant volume per kg of air, (ii) the heat supplied at constant pressure per kg of air (iii) the work done per kg of air (iv) the cycle efficiency (v) the temperature at the end of the constant volume heating process, (vi) the cut-off ratio and (viii) the m.e.p. of the cycle.	10	CO3	K3
d.	Explain vapour compression cycle.	5	CO3	К2
5.a.	A 2 stage air compressor with perfect intercooling takes air at 1 bar 27 °C. The compression takes place pollytropically in both stages having $n = 1.3$. The compressed air is delivered at 9 bar from the high pressure compressor. Calculate (i) minimum work done per kg of air. (ii) heat rejected in the intercooler per kg of air.	10	CO4	К3
b.		5	CO4	K2
c.	Find the stroke, piston diameter and indicated power of a single acting air compressor which operates under following conditions: Volume of free air delivered at 101kPa and 15°C is $105m^3/min$; Pressure and temperature at the beginning of compression are 98kPa and 30 °C, discharge pressure is 40kPa, Speed at 220 rpm, n = 1.25, stoke = bore, clearance volume= 6% of swept volume.	10	CO4	K3
d.	Classify Compressor with respect to different description.	5	CO4	K2

--- End of Paper ---