QP Code:RD22BTECH081	Reg. No									AY 21	/ AY 22
GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Third Semester Regular) Examinations, December – 2023 Electromagnetic Fields 21BELPC23003 / 21BEEPC23003 / 22BELPC23003 / 22BEEPC23003 (EE & EEE)						23					
Time: 3 hrs						,		Max	kimum	n: 70 Ma	arks
(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 Marks)					rks)						
						CO #	Blooms				
Q.1. Answer <i>ALL</i> questions				CO #	Level						
a. Convert a point $Q(2,3,5)$ to spherical co-ordinates.				CO1	K3						
b. What is physical sign	nificance of dive	ergence and	State I	Diverg	ence 7	Theore	em?			CO1	2
c. What is Gaussian su	urface? What ar	e the condi	tions to	o be s	atisfie	ed in a	specia	l Gau	ssian	CO2	K2

Q.1. Answer ALL questions		CO #	Blooms
Q.1. This wer The questions			Level
a.	Convert a point $Q(2,3,5)$ to spherical co-ordinates.	CO1	K3
b.	What is physical significance of divergence and State Divergence Theorem ?	CO1	2
c.	What is Gaussian surface? What are the conditions to be satisfied in special Gaussian	CO2	K2
	surface?		
d.	Write the expression for magnetic field due to straight current carrying conductor.	CO3	K3
e.	What is displacement current and how it affects Maxwell's equation?	CO4	K2

e.	What is displacement current and how it affects Maxwell's equation?	CO4
----	---	-----

PART – B	
----------	--

(15 x 4 = 60 Marks)

Answer ALL questions		Marks	CO #	Blooms Level	
2. a.	a. If A = $4a_{\rho} + 1 a_{\phi} + 3 a_z \& B = 2a_{\rho} + 4 a_{\phi} + 5 a_z$ are given at point P (2, $\pi/6$, 5) & Q		CO1	K3	
	$(4, \pi/3, 5)$ find C= A+B at point S $(2, \pi/4, 4)$				
b.	Determine gradient of the scalar field A= $\cos \theta \sin \phi \ln r + r^2 \cos \phi$	7	CO1	K3	
	(OR)				
c.	Determine Laplacian of a scalar field $A = \rho z \sin \phi + z \cos^2 \phi + 2\rho$	8	CO1	K3	
d.	For a scalar field explicitly show that the curl of gradient of scalar is zero.	7	CO1	K4	
3.a.	What is uniqueness theorem? Explain briefly.	7	CO2	K2	
b.	A point charge 1mc & -2mc are located at (4,2, -3) & (-2, -1,5) respectively.	8	CO2	K3	
	Calculate the electric force on a 100nc charge located at (0,2,1) & electric field				
	intensity at that point.				
	(OR)				
c.	Determine D at (4,0,3) if there is a point charge -4π mc at (3,0,0) & line charge	7	CO2	K3	
	3π mc/m along the Y-axis.				
d.	Given the potential V= $10/r^2$ (sin $\theta \cos \phi$)	8	CO2	K3	
	(i) Find the electric flux density D at $(2, \pi/2, 0)$				

(ii) Calculate the work done in moving a 10 μc charge from point

A (1,30⁰, 120⁰) to B(4,90⁰, 60⁰)

4.a.	Derive the equation for magnetic flux density - Maxwell's equation.	7	CO3	K2
b.	Given the magnetic vector potential A = $-\rho^2 / 4$ wb/m, calculate the total magnetic	8	CO3	K3
	flux crossing the surface $\varphi = \pi/2$, $2 \le \rho \le 3m$, $0 \le z \le 2m$.			
	(OR)			
c.	Starting from Ampere's Law, Derive Maxwell's equation in integral form.	7	CO3	K2
d.	Derive the expression of H at the point outside of the infinitely long coaxial	8	CO3	K3
	transmission line using amperes law.			
5.a.	A parallel plate capacitor with plate area of 5cm ² & plate separation of 3mm has	7	CO4	K3
	a voltage 50sin10 ³ t V applied to its plate. Calculate the displacement current			
	assuming $\varepsilon = 2\varepsilon_0$			
b.	Derive an expression for time varying potentials.	8	CO4	K2
	(OR)			
c.	Write short notes on faradays law of electromagnetic induction for motional emf.	7	CO4	K2
d.	Write the Maxwell's equation in time varying differential and integral form.	8	CO4	K3

--- End of Paper ---