QP Code:RD22BTECH051

Reg.

No

AY 22

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester Regular) Examinations, December - 2023

22BELPC23001/22BEEPC23001-Electrical Machines - I

(EE & EEE)

Time: 3 hrs

Maximum: 70 Marks

-			aximum. 70 Marks			
P	Answer all questions (The figures in the right hand margin indicate marks)PART – A(2 x 5 = 10 Marks)					
Q.1	. Answer ALL questions		CO #	Blooms Level		
a.	Mention and explain the various causes for the failure of the generator to build u	p.	CO1	K3		
b.	What is the commutator pitch of a 4-pole d.c. armature having 49 commutator ba	ars?	CO1	K2		
c.	What will happen if a shunt motor is directly connected to the supply line ?		CO2	K2		
d.	How is magnetic leakage reduced to a minimum in commercial transformers?		CO3	K2		
e.	In Transformers, Why the Low Voltage Winding is Placed Near The Core?		CO4	K3		

PART – B

(15 x 4 = 60 Marks)

Answer ALL questions		Marks	CO #	Blooms Level
2. a.	A long shunt d.c. compound generator delivers 110 kW at 220 V. If $ra = 0.01$ ohm, rse = 0.002 ohm, and shunt field has a resistance of 110 ohms, calculate	8	CO1	K3
	the value of the induced e.m.f.	_	001	1/2
b.	Explain magnetization characteristics of a DC shunt generator? (OR)	7	CO1	K2
c.	A 10 kW, 250 V, d.c., 6-pole shunt generator runs at 1000 r.p.m. when	8	CO1	K3
С.	delivering full-load. The armature has 534 lap-connected conductors. Full-	0		
	load Cu loss is 0.64 kW. The total brush drop is 1 volt. Determine the flux per			
	pole. Neglect shunt current.			
d.	Explain the OCC of self-excited DC generator. Discuss he procedure to	7	CO1	K2
	determine Rc and Nc from the OCC.			
3.a.	Explain brake test and find out the efficiency of dc machine	7	CO2	K3
b.	A 500 V shunt motor runs at its normal speed of 250 rpm when the armature	8	CO2	K3
	current is 200 A. The resistance of the armature is 0.12 ohm. Calculate the			
	speed when a resistance is inserted in the field reducing the shunt field to 80%			
	of normal value and armature current is 100 A.			
	(OR)		GO2	
с.	A 220 V shunt motor takes a total current of 80 A and runs at 800 rpm. Shunt	7	CO2	K3
	field resistance and armature resistance are 50 ohms, and 0.1 ohm			
	respectively. If iron and friction losses amount to1600 W, find (i) copper			
d.	losses (ii) armature torque (iii) shaft torque (iv) efficiency Explain phasor diagram of transformer with (i) Inductive (ii) capacitive	8	CO2	К3
u.	loaded condition by considering winding resistances and leakage reactance	0	02	KS
	forded condition by considering whiching resistances and reakage reactance			
4.a.	What is the leakage flux in a transformer? Why is it modeled in a transformer equivalent circuit as an inductor?	7	CO3	K2
	1			

A 25-kVA transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to 3000-V, 50-Hz supply. Find the full-load primary and secondary currents, the secondary e.m.f. and the maximum flux in the core. Neglect leakage drops and no-load primary current (OR)	8	CO3	K3
Why does the short-circuit test essentially show only i^2R losses and not excitation losses in a transformer?	7	CO3	K2
In no-load test of single-phase transformer, the following test data were obtained: Primary voltage: 220 V Secondary voltage: 110 V	8	CO3	K3
Primary current: 0.5 A Power input: 30 W.			
-			
working (or loss) component (iv) the iron loss. Resistance of the primary			
winding $= 0.6$ ohm.			
What types of connections can be used? What are their advantages and disadvantages?	7	CO4	K2
Explain why the open-delta transformer connection is limited to supplying	8	CO4	K3
57.7 percent of a normal delta-delta transformer bank's load.			
(OR)			
What happens to a transformer when it is first connected to a power line? Can anything be done to mitigate this problem?	8	CO4	K2
Write the various types of connections associated with three phase transformers.	7	CO4	K3
	secondary winding. The primary is connected to 3000-V, 50-Hz supply. Find the full-load primary and secondary currents, the secondary e.m.f. and the maximum flux in the core. Neglect leakage drops and no-load primary current (OR) Why does the short-circuit test essentially show only i^2R losses and not excitation losses in a transformer? In no-load test of single-phase transformer, the following test data were obtained: Primary voltage: 220 V Secondary voltage: 110 V Primary current: 0.5 A Power input: 30 W. Find the following: (i) The turns ratio (ii) the magnetising component of no-load current (iii) its working (or loss) component (iv) the iron loss. Resistance of the primary winding = 0.6 ohm. What types of connections can be used? What are their advantages and disadvantages? Explain why the open-delta transformer connection is limited to supplying 57.7 percent of a normal delta-delta transformer bank's load. (OR) What happens to a transformer when it is first connected to a power line? Can anything be done to mitigate this problem? Write the various types of connections associated with three phase	Secondary winding. The primary is connected to 3000-V, 50-Hz supply. Find the full-load primary and secondary currents, the secondary e.m.f. and the maximum flux in the core. Neglect leakage drops and no-load primary current (OR)Why does the short-circuit test essentially show only i^2R losses and not excitation losses in a transformer?7In no-load test of single-phase transformer, the following test data were obtained: Primary voltage: 220 V Secondary voltage: 110 V Primary current: 0.5 A Power input: 30 W. Find the following: (i) The turns ratio (ii) the magnetising component of no-load current (iii) its working (or loss) component (iv) the iron loss. Resistance of the primary winding = 0.6 ohm.7What types of connections can be used? What are their advantages and for a normal delta-delta transformer bank's load. (OR)8S7.7 percent of a normal delta-delta transformer bank's load. (OR)8What happens to a transformer when it is first connected to a power line? Can anything be done to mitigate this problem?8Write the various types of connections associated with three phase7	Ar 25-K VA unistrimet has 500 units on the primary and 50 units on the5secondary winding. The primary is connected to 3000-V, 50-Hz supply. Findthe full-load primary and secondary currents, the secondary e.m.f. and themaximum flux in the core. Neglect leakage drops and no-load primary current(OR)Why does the short-circuit test essentially show only i^2R losses and notexcitation losses in a transformer?In no-load test of single-phase transformer, the following test data wereobtained:Primary voltage: 220 VSecondary voltage: 110 VPrimary current: 0.5 APower input: 30 W.Find the following:(i) The turns ratio (ii) the magnetising component of no-load current (iii) itsworking (or loss) component (iv) the iron loss. Resistance of the primarywinding = 0.6 ohm.What types of connections can be used? What are their advantages andfor OR What happens to a transformer when it is first connected to a power line? Cananything be done to mitigate this problem?Write the various types of connections associated with three phase7CO4

--- End of Paper ---