QP C	Code: RD22BTECH065	Reg. No												AY 22
	Fime: 3 hrs	3. Tech 22BEC	(Thi	rd Se	mest	er Re	gular ical a) Exa	mina		, Dec Mea	embe asure		ts
	('	The figu	res in	the r	right l	nand	nargi	n indi	cate n	narks))			
P	ART – A										(4	2 x 5 =	= 10 Ma	arks)
Q.1.	Answer ALL questions	5											CO #	Blooms Level
a.	What were the drawba designed?	cks of K	Celvin	's bri	dge dı	ue to y	which	Kelvi	n's do	ouble ł	oridge	was	CO1	K3
b.	A Maxwell bridge is u balance conditions are:									U	onstar	nts at	CO1	K3
	Find the series equivale	ent of the	e unkn	iown i	mped	ance.								
c.	Define the following te	rms used	l in ga	alvano	meter	(i) Cl	DRX (ii) log	arithn	nic dec	reme	nt.	CO2	K1
d.	How is dynamometer currents?	type inst	trume	nt use	ed as	an an	nmeter	for r	neasu	rement	s of s	small	CO1	K4
e.	If the core of CT is per	manently	/ mag	netize	d ther	how	will yo	ou der	nagne	tize it?	,		CO2	K5
PA	RT – B										(15 x 4	= 60 N	(Jarks)
Ans	wer ALL questions										Ν	/larks	CO #	Blooms Level
2. a	a. In a four-arm bridge of an unknown capa non-reactive resistar $0.0115 \ \mu F$ capacitar balanced for frequer resistance and capac	ficitor in fices of 1 fice in se ficy $\omega =$	series 1000 s ries w 7500	with Ω eac vith a) radi	unkno h and resist ans/se	own r DA ance o c, Fin	esistan is a st of 140 id the	andar Ω. It	C and d capa f the b	CD and the control of	re of is	8	CO3	К3
t	 Draw a neat diagram bridge is under balar 			son B	ridge.	Dedu	ce the	equat	ions v	vhen th	ne	7	CO1	K2
			(0	OR)										
C	 A length of cable i method. An electrosy the cable conductor pF (600 x 10⁻¹² F). It V to 92 V in 1 min. 	tatic volt and eart is obser	tmeter th, for ved th	of in rming nat aft	finite there er cha	resista with a rging	ance is i joint the vo	conn capao ltage	ected citance falls fi	betwee e of 60	en)0	8	CO2	К3

- d. Describe the working of Maxwell's inductance-capacitance bridge for measurement of inductance with a suitable diagram. CO1 K2 7
- 3.a. What is the basic principle of potentiometer? Briefly explain the applications CO2 K2 7 of potentiometer.

b.	The suspended coil of a galvanometer has a 5 mm x 2.5 mm mean area and is situated in a magnetic field of 1.1 tesla. The moment of inertia of moving parts is 0.25×10^{-6} kg-m and the control string constant is 35×10^{-6} Nm/rad. If a current of 12 mA produces a deflection of 110° , calculate the number of turns of the suspended coil.	8	CO2	K2
	(OR)			
c.	A mill ammeter of 2.5 Ω resistance reads up to 100 mA. Calculate the resistance necessary to enable it to be used as; (i) A voltmeter reading up to 10 V (ii) An ammeter reading up to 10 A Draw the connection diagram of each case.	7	CO2	K2
d.	Prove that the deflection is proportional to square of the r.m.s value of the operating current in moving iron instruments.	8	CO2	K2
4.a.	Three loads, each of resistance 30, are connected in star to a 415 V, 3-phase supply. Determine (i) the system phase voltage (ii) the phase current and (iii) the line current.	7	CO2	K3
b.	 In a 3-phase circuit, two watt meters used to measure power indicate 1200 W and 600 W respectively. Find the power factor of the circuit: (i) When both wattmeter readings are positive. (ii) When the latter is obtained by reversing the current coil connections. 	8	CO3	K1
	(OR)			
c.	(OR) Explain the working of a frequency meter which depends on electrical resonance.	7	CO2	K3
c. d.	Explain the working of a frequency meter which depends on electrical	7 8	CO2 CO3	K3 K1
	 Explain the working of a frequency meter which depends on electrical resonance. While performing a load test on a 3-phase wound rotor induction motor by two watt meters, the readings obtained on two watt meters were 14.2 kW and -6.1 kW and the line voltage was 440 V. Calculate; (i) True power drawn by the motor (ii) Power factor 			
d.	Explain the working of a frequency meter which depends on electrical resonance. While performing a load test on a 3-phase wound rotor induction motor by two watt meters, the readings obtained on two watt meters were 14.2 kW and -6.1 kW and the line voltage was 440 V. Calculate; (i) True power drawn by the motor (ii) Power factor (iii) Line current Write a short note on: (i) Wave analyser	8	CO3	K1
d. 5.a.	 Explain the working of a frequency meter which depends on electrical resonance. While performing a load test on a 3-phase wound rotor induction motor by two watt meters, the readings obtained on two watt meters were 14.2 kW and -6.1 kW and the line voltage was 440 V. Calculate; (i) True power drawn by the motor (ii) Power factor (iii) Line current Write a short note on: (i) Wave analyser (ii) Harmonic distortion Analyser A 1000/5 A, 50 Hz CT has a secondary load burden comprising of non-inductive impedance of 1.6 ohm. The primary winding has 1 turn, iron 	8	CO3 CO2	K1 K2
d. 5.a.	 Explain the working of a frequency meter which depends on electrical resonance. While performing a load test on a 3-phase wound rotor induction motor by two watt meters, the readings obtained on two watt meters were 14.2 kW and -6.1 kW and the line voltage was 440 V. Calculate; (i) True power drawn by the motor (ii) Power factor (iii) Line current Write a short note on: (i) Wave analyser (ii) Harmonic distortion Analyser A 1000/5 A, 50 Hz CT has a secondary load burden comprising of non-inductive impedance of 1.6 ohm. The primary winding has 1 turn, iron loss is 1.5W, mmf = 100AT. Calculate the flux in the core and the ratio error. 	8	CO3 CO2	K1 K2

--- End of Paper ---