

QP Coo	de:RD22BTECH039 Reg No											AY 21	/ AY 22
	2018	G B. Tec BCSB	h (Th	ird Se	emest	er) Ex S BS 2	amin	ations	s, Dec	e Ma	r – 20 then	natics	
11	me: 3 hrs		A		. 11	4 •				Max	timun	n: 70 M	arks
PA	(The fi	gures ir		swer a right h	-			cate n	narks		2 x 5 =	= 10 Ma	arks)
Q.1. A	Answer ALL questions											CO #	Blooms Level
	Vrite the converse, inverse					each o	f the	follov	ving i	mplica	tion.	CO1	K2
	If x and y are numbers such Determine the truth value of		•		•	6 + 2	= 5 . t	hen th	e milk	is wh	ite".	CO1	K1
	Find the coefficient of x^{10} in				1		5,0		•			CO2	K1
					(1-2)	x)							
d. S	how that the intersection	of two n	orma	l subg	roups	s is no	rmal.					CO3	K1
е. Т	he planner representation	of a sir	nple g	graph	with	20 ver	tices	split t	he pla	ne in	to	CO4	K2
1	2 regions then how many o	edges it	has?										
PAR	T – B									(15 x 4	4 = 60 N	(Jarks)
Answ	er ALL questions									Ν	/larks	CO #	Blooms Level
2. a.	Construct the truth table of	$f((p \rightarrow$	$q) \rightarrow d$	$r) \rightarrow s$	•						7	CO1	K2
b.	Use the Principle of Math	ematica	l Indu	ction (to ver	ify tha	t, for	n any	positi	ve	8	CO1	K2
	integer, $6^n - 1$ is divisible	by 5.											
		(OR)										
c.	Translate each of these st quantifiers and logical con a) No one is perfect.			logic	al exp	oressio	ns usi	ing pr	edicat	es,	7	CO1	K2
	b) Not everyone is perfect.												
	c) All your friends are perfect.												
	d) At least one of your frie		erfect										
	e) Not everybody is your	-			s not p	perfect							
d.	Show that $(p \lor q) \land (\neg p \lor q)$				-						8	CO1	K2
3.a.	Find all solutions of the recu						_2.+(n	$+1)2^{n}$			10	CO2	K2
b	Find all the solutions of $a_n =$										5	CO2	K2
		(OR)										
c.	Use generating function to so	olve the r	ecurre	ence rel	lation						8	CO2	K2
	$a_k = 5a_{k-1} - 6a_{k-2}$ with in	itial co	nditio	$na_0 =$	= 6 <i>an</i>	$da_1 =$	30						
d.	Find the transitive closure on the set $A = \{a, b, c\}$.usin					,(b,c),	(c,a) (c	c,b)} d	efined		7	CO2	К2

^{4.}a. Let (A, \leq) be a distributive lattice. show if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some a CO3 K2 8 then show that x = y

b.	Find the Disjunctive normal form for the function $F(x, y, z) = (x + y)\overline{z}$	7	CO3	K2
	(OR)			
c.	Prove that a group $(G,*)$ containing 4 elements is an abelian group.	8	CO3	K2
d.	State and prove Lagrange's theorem of finite groups.	7	CO3	K2
5.a.	Prove that a connected multi-graph with at least two elements has an Euler circuit if	7	CO4	K2
	and only if each of its vertices has an even degree.			
b.	Find minimum spanning tree by using Prims algorithm.	8	CO4	K2

- c. Prove that a tree with n vertices has n-1 edges.
- d. Find the minimum spanning tree by using Kruskal's algorithm

5

10

CO4

CO4

K2

K2

--- End of Paper ---