GIET UNIVERSITY, GUNUPUR – 765022

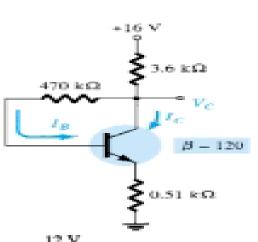
B. Tech (Third Semester Regular) Examinations, December - 2023

22BECPC23001 – Analog Electronic Circuits (ECE)

Time: 3 hrs Maximum: 70 Marks

Answer all questions

(The figures in the right hand margin indicate marks)


PAKI –	\cdot A		($2 \times 5 = 10 \text{ Marks}$

Q.1. Answer <i>ALL</i> questions		CO#	Blooms Level
a.	Define how BJT is a current-controlled device whereas FET is a voltage-controlled	CO1	K1
	device?		
b.	In a fixed bias circuit with emitter stabilized resistor, $R_B=560~K\Omega,~R_C=4.7~K\Omega,~R_E=1$	CO1	K2
	$K\Omega,~V_{CC}$ = 10 V, β = 80, coupling capacitors of 0.01 μF and CE = 0.047 μF are used.		
	Find the value of I_{Csat} .		
c.	Define the Threshold voltage for a MOSFET.	CO2	K1
d.	Draw the r _e equivalent circuit for emitter follower configuration of BJT and write the	CO3	K2
	expression for voltage gain.		
e.	Find the feedback connection type which is used in the of RC phase-shift oscillator.	CO4	K1

$PART - B ag{15 x 4} = 60 Marks$

Answer ALL questions

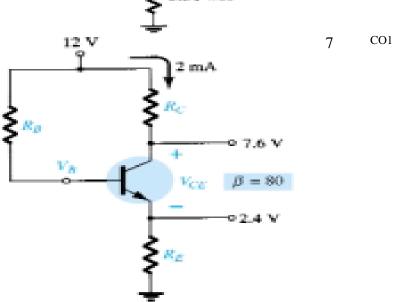
 a. For the collector feedback configuration, determine the dc operating point of the biasing circuit.

Marks

8

CO#

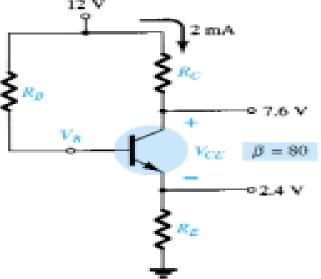
CO1


Blooms

Level

K3

K3


b. In the circuit, determine: R_{C_1} , R_{E_1} , R_{B_2} , V_{CE} , V_{B_2}

Page 1 of 3

c.	Derive expressions for the stability factors of a Fixed bias CE amplifier.	8	CO1	K3
d.	In the circuit, determine: 12 V	7	CO1	K3

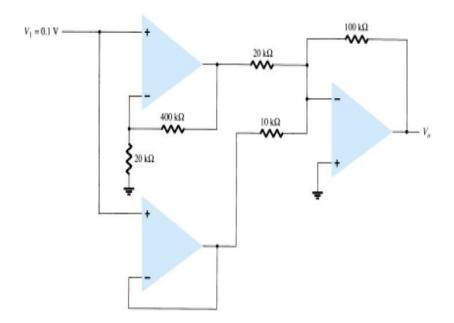
 R_{C} , R_{E} , R_{B} , V_{CE} , V_{B} .

K1

K3

- 3.a. Draw and analyse a DEMOSFET configuration. Why is it called so? 7 CO2 K1
 - b. Briefly explain the principle and operation of n-channel DMOSFET with its 8 transfer characteristics.

(OR)


- c. Briefly explain the principle and operation of n-channel JFET with its transfer 7 CO2 K1 characteristics.
- d. Explain the need of a CMOS circuit. Draw a basic CMOS circuit. 8 CO2 K1
- 4.a. For the Self bias circuit of BJT, draw the AC equivalent circuit and derive the 8 CO3 K2 expression for voltage gain, input impedance and output impedance.
 - b. Show that the trans-conductance g_m of a JFET is related to the drain current 7 CO3 K2 I_{DS} given by $g_m = \frac{2}{|V_P|} \sqrt{I_{DSS}I_{DS}}$ where the symbols have their usual meanings.

(OR)

- c. Draw the equivalent model of a voltage-divider biased JFET circuit under 8 CO3 K2 small signal conditions and calculate A_{VNL} , Z_i and Z_o .
- d. Derive the voltage gain for a Common Base configuration using its r_e 7 CO3 K2 equivalent circuit.
- 5.a. Write various advantages of negative feedback. Draw the block diagrams of 8 CO4 K2 different topologies and write down its gain with feedback.
- b. Draw the RC phase shift oscillator with Op-Amp and calculate the gain, A of the amplifier and the operating frequency of this RC phase-shift oscillator for $R = 3.3 \text{K}\Omega$, C = 0.1 pF, and $R_1 = 33 \text{K}\Omega$ and $R_F = 1 \text{M}\Omega$.

(OR)

- c. Draw a push pull transformer-coupled class B power amplifier and explain its 8 CO4 K2 operation.
- d. Calculate the output voltage, *Vo*, in the circuit given below: 8 CO4 K3

