QP Code:RM23BTECH017	Reg. No										AY 23
		ch (Se	econd SBS	nester)1 – E	Regi E ngir	ular) leeri i	Exan ng M	ninati Iathe	ions, emat ^{logy)}	May ics - 1	
Time: 3 hrs									N	/laxim	um: 60 Marks

(The figures in the right hand margin indicate marks)

Q.1. Answer ALL questions					
a.	a. State the conditions for the existence of Laplace Transformation of $f(t)$.				
b.	b. Find the unit normal vector to the surface $2x + 3y + 4z = 24$				
c.	c. Find the Laplace transformation of $e^{2t} * \cos 4t$				
d.	d. State D'Alembert's Ratio Test.				
e.	Form a partial differential equation by Eliminating the arbitrary constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	CO1	K2		

PART – B

PART – A

(10 x 5 = 50 Marks)

 $(2 \times 5 = 10 \text{ Marks})$

Answer ALL questions			CO #	Blooms Level
2. a.	Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	5	CO3	K3
b.	Solve $z - q^2 y - p^2 x = 0$.	5	CO3	K3
	(OR)			
c.	Solve $x(y-z)p + y(z-x)q = z(x-y)$ by Lagrange's method.	5	CO3	K3
d.	Solve the PDE $px + qy + pq = 0$ by Charpit's method.	5	CO3	K3
3.a.	Test the Convergence of the series $\sum \left[\frac{nx}{n+1}\right]^n$, $(x > 0)$.	5	C04	K3
b.	Verify that the series is Convergent or Divergent $\sum_{n=0}^{\infty} \frac{(20+30i)^n}{n!}$	5	C04	K3
	(OR)			
c.	Solve the Differential equation $y'' - 4y' + 3y = 0$ by power series method	5	C04	K3
d.	Test the Convergence of the series $\sum (x^n / n)$, (x>0)	5	C04	K3
4.a.	Find the Laplace transformation of the following function $\frac{\cos 2t - \cos 3t}{t}$	5	C05	K3
b.	Find $L^{-1}\left[\frac{1-7s}{(s-3)(s-1)(s+2)}\right]$	5	C05	К3
	(OR)			
c.	Solve the following integral equation $y(t) = te^t - 2e^t \int_0^t e^{-\tau} y(\tau) d\tau$	5	C05	K3
d.	Find the inverse Laplace transformation of $\frac{s^2}{(s^4+a^4)}$	5	C05	K3
5.a.	Calculate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where the Force $F = [xy, x^2y^2]$ and work in the displacement along C in the quarter - circle from (2,0) to (0,2) with centre at (0,0).	5	CO3	К3

b. Find the Directional derivative of *f* at the point *P* in the direction of vector *a*, 5 CO3 K3 where $f = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, P: (2, 0, 5) and a = i + j + k.

(OR)

^{c.} By using Greens theorem evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $F = \frac{e^y}{x}i + (e^y \ln x + 2x)j$ 5 CO3 K3 and $R: 1 + x^4 \le y \le 2$

d. Evaluate
$$\int_0^3 \int_{-y}^{y} (x^2 + y^2) dx dy$$
 by changing the order of integration. 5 CO3 K3

- 6.a. Using Gauss Divergence theorem, Evaluate the integral $\iint_S F \cdot \hat{n} \, dA$, if 5 CO5 K3 $F = [x^3, y^3, z^3]$ and S is the sphere $x^2 + y^2 + z^2 = 9$
 - b. Calculate $\oint_C \mathbf{F} \cdot d\mathbf{s}$ with Arc Length as Parameter where $f = \sqrt{2 + x^2 + 3y^2}$ 5 CO5 K3 $C: r = [t, t, t^2], 0 \le t \le 3$

(OR)

c. Using Greens theorem, Evaluate the line Integral over the Curve C, where C is 5 CO6 K3 the rectangle with vertices (0,0), (2,0), (2,3), (0,3) and $F[x^2e^y, y^2e^x]$.

CO6

K3

d. Evaluate the Integral $\int_{(0,1,2)}^{(1,-1,7)} 3x^2 dx + 2zy dy + y^2 dz$ by showing F has potential and integral is path independent. 5

--- End of Paper ---