QP Code:	RM23BTECH017
----------	--------------

GIET UNIVERSITY, GUNUPUR - 765022

B. Tech (Second Semester Regular) Examinations, May - 2024

23BBSBS120B1 - Engineering Mathematics-II

(Biotech)

Maximum: 60 Marks

(The figures in the right hand margin indicate marks) PART – A			(2 x 5 = 10 Marks)	
Q.1. Answer ALL questions			CO #	Blooms
a. Find the value of 'p', is the distance between two points is (p, 3) and (4,5) is $\sqrt{5}$.			CO1	Level K1
	ind the Derivative of $\frac{1-\tan x}{1+\tan x}$.		CO1	K1
c. Find the value of $\int \sec(\sec x + \tan x) dx$			CO1	K2
d. Find the gradient of F , wherei. $F = e^{xyz}$ ii. $F = x^2 + y^2 + z^2$.			CO2	K2
e. If	$P(E) = 0.6$, $P(F) = 0.3$ and $P(E \cap F) = 0.2$. Find $P(E/F)$ and $P(F/E)$.		CO1	K1
PART – B		(10 x 5 = 50 Marks)		
Answ	er ALL questions	Marks	CO #	Blooms Level
2. a.	Find the intercept form of straight line passing through points (3,4) and having sum of intercept is 14.	5	CO2	K3
b.	Find the internal, external and mid point of (3,6) and (5,2) with ratio $5:2$.	5	CO3	K2
	(OR)			
c.	Find the angle between three points $(0,1)$, $(-2,0)$ and $(-3, -2)$.	5	CO2	K2
d.	Find the equation of circle passing through the points (2,3) and (4,5) and also	5	CO3	K3
	find its centre and radius .			
3.a.	Find the derivative of i. $\left[\frac{x^2+1}{(x^3-3x)}\right]$ ii. $\sqrt{\sin x + \cos x}$ iii. $\cos(\ln x)^2$	6	CO3	K3
b.	Prove that the function $f(x) = 5x+3$ is continuous at point $x=2$	4	CO2	K2
	(OR)			
c.	Prove that the function $f(x)=x^2 + 2x + 1$ is continous at $x = 3$	4	CO2	K2
d.	Find the Derivative of i.e $\sqrt{\sin x}$ + e $\sqrt{\cos x}$ ii.log $\sqrt{\sin x}$ + log cosx	6	CO3	K3
	iii. $[Sinx + Cosx]e^{2x}$			
4.a.	Find the i. $\int \frac{x^3 + x^2 + x + 1}{x^3} dx$ ii. $\int (ax^2 + bx + c) dx$ iii. $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$	6	CO2	K3
b.	Find the value of i. $\int_0^1 \log x dx$ ii. $\int_2^3 x^2 dx$	4	CO2	K2
	(OR)			
c.	Find the value of i. $\int \frac{1}{(x+5)^2(x-1)} dx$ ii. $\int \frac{x^2+1}{x(x+2)(x+1)} dx$	6	CO2	K2

Reg.

No

Time: 3 hrs

d.	Find the value of i. $\int_0^1 x e^{x^2} dx$ ii. $\int_0^{\pi} \sin x dx$	4	CO3	K3
5.a.	A die is thrown. Find the probability of getting: (i) a prime number (ii) 2 or 4 (iii) a multiple of 2 or 3 (iv) an even prime number (v) a number greater than 5 (vi) a number lying between 2 and 6.	6	CO2	К3
b.	A car manufacturing factory has two plants, X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30%. 80% of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. A car is chosen at random and is found to be of standard quality. What is the probability that it has come from plant X ?	4	CO3	K2
	(OR)			
c.	If $P(A) = 0.45 P(B) = 0.25$, $P(A \cup B) = 0.35$ then Find $P(A \cap B)$. Are A	4	CO2	K3
	and B independent?			
d.	There are 3 Companies A_1 , A_2 and A_3 which products 30%, 30% and 40% of	6	CO3	K3
	the product and 1%, 2%, 3% products are defective produced by A_1 , A_2 and A_3			
	respectively. If a product is chosen randomly which is defective then what is			
	the probability that it is produced by Company A_1 .			
6.a.	Find the Divergence and Curl of $\mathbf{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ and $\mathbf{F} = x\hat{i} + y\hat{j} + z\hat{k}$	5	CO2	K2
b.	Find the angle between the planes $x + y + z = 1$ and $x + 2y + 3z = 6$.	5	CO2	K3
	(OR)			
c.	Find the directional derivative of a function $f = x^2 + 3y^2 + 4z^2$ in the	6	CO2	K3
	direction of a vector $(1, -1, -1)$ at a point $(1, 0, 1)$.			
d.	Find the angle between the vectors \vec{a} and $\vec{b} + \vec{c}$. Where $\vec{a} = \hat{i} + \hat{j}$,	4	CO2	K3
	$\vec{\mathbf{b}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}$.			

--- End of Paper ---