$(2 \times 5 = 10 \text{ Marks})$

GIET UNIVERSITY, GUNUPUR - 765022

PART - A

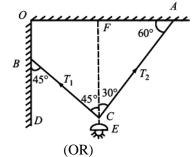
B. Tech (Second Semester) Examinations, May – 2024

23BBSES10002 - Elements of Mechanical Engineering

(Common to all branches)

Time: 3 hrs Maximum: 60 Marks

(The figures in	the right hand	margin indicate	marks)
(= === === === === === === === === ===			

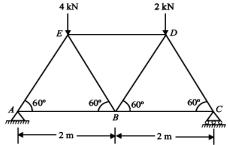

Q.1. Answer <i>ALL</i> questions		CO#	Blooms Level
a.	What is the free body diagram? Explain it with a suitable example.	CO1	K2
b.	Differentiate between static and dynamic friction.	CO3	K2
c.	Define intensive and extensive properties with examples.	CO4	K1
d.	What is a PMM1? Why is it impossible?	CO5	K1
e.	Write down the various benefits of industrial robot.	CO6	K1

PART – B (10 x5=50 Marks)

Answer ALL questions

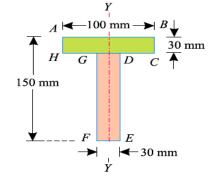
2. a. Find the magnitude of two forces such that if they act at right angle their resultant is $\sqrt{10}$ KN, While they act at an angle of 60°, their resultant is $\sqrt{13}$ KN.

b. An Electric light fixture weighing 15N hangs from a point C, by two strings AC and BC. AC is inclined at 60° to the horizontal and BC at 45° to the vertical as shown in figure, Determine the forces in the strings AC and BC

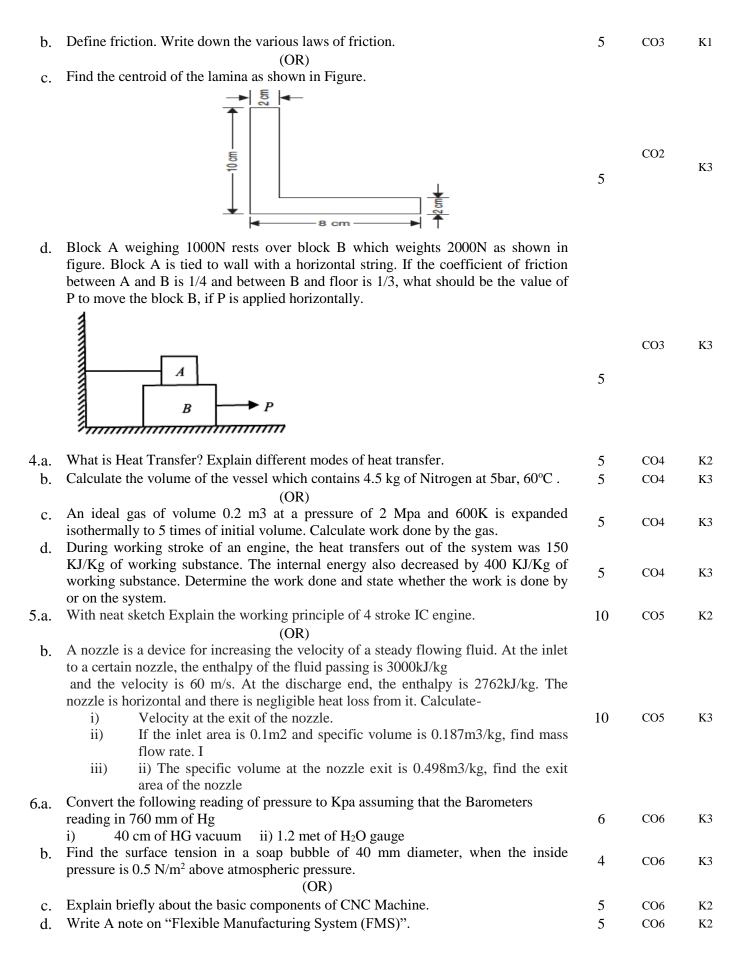

5 CO1 K3

CO#

Blooms


Marks

c. Determine the reaction and the forces in each member of a simple triangle truss supporting two loads as shown in figure.



10 CO1 K3

3.a. Find the centroid of a 100 mm \times 150 mm \times 30 mm T-section.

5 CO2 K3

--- End of Paper ---