

## GIET UNIVERSITY, GUNUPUR - 765022

B. C. A (Third Semester) Examinations, January 2024

## **BCA20103 - Fundamental of Operating System**

Time: 3 hrs Maximum: 70 Marks

The figures in the right hand margin indicate marks.

| I                         | PART – A: (Multiple Choice Questions) (1 x |                                                |         |                                    |     | 10 =10 Marks) |  |
|---------------------------|--------------------------------------------|------------------------------------------------|---------|------------------------------------|-----|---------------|--|
| Q. 1 Answer ALL questions |                                            |                                                |         |                                    | CO# | PO#           |  |
| a.                        | To ac                                      | ccess the services of the operating syste      | em, tl  | he interface is provided by the    | CO1 | PO1           |  |
|                           | i.                                         | API                                            | ii.     | System calls                       |     |               |  |
|                           | iii.                                       | Library                                        | iv.     | Assembly instructions              |     |               |  |
| b.                        | In a t                                     | imeshare operating system, when the time       | slot as | ssigned to a process is completed, | CO1 | PO1           |  |
|                           | the pr                                     | ocess switches from the current state to?      |         |                                    |     |               |  |
|                           | i.                                         | Terminated state                               | ii.     | Suspended state                    |     |               |  |
|                           | iii.                                       | Ready state                                    | iv.     | Ready state                        |     |               |  |
| c.                        | Page f                                     | fault occurs when                              |         |                                    | CO2 | PO1           |  |
|                           | i.                                         | when a requested page is in the memory         | ii.     | when a exception is thrown         |     |               |  |
|                           | iii.                                       | when a requested page is not in the            | iv.     | when a page is corrupted           |     |               |  |
|                           |                                            | memory                                         |         |                                    |     |               |  |
| d.                        | The es                                     | ssential content(s) in each entry of a page ta | ble is  | / are                              | CO2 | PO1           |  |
|                           | i.                                         | page frame number                              | ii.     | access right information           |     |               |  |
|                           | iii.                                       | virtual page number                            | iv.     | both virtual and page frame number |     |               |  |
| e.                        | What                                       | are the minimum no.s of processes              | that    | can a deadlock have among          | CO4 | PO2           |  |
|                           | thems                                      | selves                                         |         |                                    |     |               |  |
|                           | i.                                         | 4                                              | ii.     | 3                                  |     |               |  |
|                           | iii.                                       | 2                                              | iv.     | 1                                  |     |               |  |
| f.                        | What                                       | is a deadlock in an operating system?          |         |                                    | CO4 | PO1           |  |
|                           | i.                                         | a scheduling algorithm                         | ii.     | system crash                       |     |               |  |
|                           | iii.                                       | A situation where a process cannot             | iv.     | process termination                |     |               |  |
|                           |                                            | proceed because it is waiting for a            |         |                                    |     |               |  |
|                           |                                            | resource held                                  |         |                                    |     |               |  |
| g.                        | How o                                      | can deadlock prevention be achieved?           |         |                                    | CO4 | PO1           |  |
|                           | i.                                         | By ensuring that at least one of the           | ii.     | Increasing the number of           |     |               |  |
|                           |                                            | necessary conditions for deadlock              |         | resources                          |     |               |  |
|                           |                                            | cannot hold                                    |         |                                    |     |               |  |
|                           | iii.                                       | Ignoring the deadlock                          | iv.     | Allow the system to enter          |     |               |  |
|                           |                                            |                                                |         | deadlock and then recover          |     |               |  |
| h.                        | Three                                      | e bits used to control access the in UNI       | X are   | represented by:                    | CO2 | PO1           |  |
|                           | i.                                         | X                                              | ii.     | r                                  |     |               |  |
|                           | iii.                                       | all of the above                               | iv.     | W                                  |     |               |  |
| i.                        | _                                          | group, all users get access to a               |         |                                    | CO3 | PO2           |  |
|                           | i.                                         | different                                      | ii.     | none of the mentioned              |     |               |  |

| j                                                                                                                                | iii. same Assume that there are 3 page frames which ar string is 1, 2, 3, 4, 2, 1, 5, 3, 2, 4, 6, the nu           |                                        |                | e PC | 01         |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|------|------------|--|
|                                                                                                                                  | replacement policy is                                                                                              | amoer or page radius using the optimal | •              |      |            |  |
|                                                                                                                                  | i. 8                                                                                                               | ii. 6                                  |                |      |            |  |
|                                                                                                                                  | iii. 7                                                                                                             | iv. 5                                  |                |      |            |  |
|                                                                                                                                  | PART – B: (Short Answer Questions)                                                                                 | (2 x 1                                 | x 10=20 Marks) |      |            |  |
| <u>C</u>                                                                                                                         | .2. Answer ALL questions                                                                                           |                                        | CO#            | PO i | #          |  |
|                                                                                                                                  | <ul> <li>Differentiate between system software and<br/>principles of the following replacement algorith</li> </ul> |                                        | CO1            | POI  | l          |  |
|                                                                                                                                  | b. Define system calls and Virtual machine.                                                                        |                                        | CO1            | PO2  | 2          |  |
|                                                                                                                                  | c. What is the advantages of threads compared to processes?                                                        |                                        |                |      | l          |  |
|                                                                                                                                  | d. How the problem of external fragmentation can                                                                   | be solved?                             | CO2            | PO1  |            |  |
|                                                                                                                                  | e. What is demand paging?                                                                                          |                                        | CO2            | PO1  |            |  |
|                                                                                                                                  | f. Suppose that we have free segments with sizes                                                                   |                                        | CO2            | PO2  | 2          |  |
|                                                                                                                                  | with size 13kB in the free segment using first-fig. Mention the differences between                                | it, best-iit and worst iit.            | CO2            | PO2  | 2          |  |
|                                                                                                                                  | i) Logical and physical address                                                                                    |                                        |                |      |            |  |
|                                                                                                                                  | ii) Page table and segment table                                                                                   |                                        | CO3            | DO:  |            |  |
|                                                                                                                                  | h. Mention various File Operations.                                                                                |                                        |                |      | PO1<br>PO1 |  |
| <ul><li>i. What is a File?</li><li>j. What are the various ways of aborting a process in order to eliminate deadlocks?</li></ul> |                                                                                                                    |                                        |                | PO1  |            |  |
|                                                                                                                                  |                                                                                                                    |                                        | CO4            |      |            |  |
|                                                                                                                                  | PART – C: (Long Answer Questions)                                                                                  | (10 :                                  | x 4= 40 Marks) |      |            |  |
| Ansv                                                                                                                             | ver ALL questions                                                                                                  |                                        | Marks          | CO#  | PO#        |  |
| 3.a.                                                                                                                             | Evaluate Round Robin CPU Scheduling algorithms                                                                     | orithm for given Problem, where        | 5              | CO1  | PO2        |  |
|                                                                                                                                  | Time slice =3 ms. Process P1 P2 P3 P4 Burst Ti                                                                     | me 10 5 18 6 Arrival Time 5 3 0 4.     |                |      |            |  |
|                                                                                                                                  | Find the avg. TAT and WT.                                                                                          |                                        |                |      |            |  |
| b.                                                                                                                               | Discuss the essential properties of the                                                                            | following types of systems:            | 5              | CO1  | PO1        |  |
|                                                                                                                                  | i) Time sharing systems ii) Multi-processor system                                                                 | ns.                                    |                |      |            |  |
|                                                                                                                                  | (OR)                                                                                                               |                                        |                |      |            |  |
| c.                                                                                                                               | Discuss the services provided by the operating sys                                                                 | tem for efficient system operation.    | 5              | CO1  | PO1        |  |
| d.                                                                                                                               | "Operating system is resource manager"-Jus                                                                         | tify this statement with suitable      | 5              | CO1  | PO1        |  |
|                                                                                                                                  | functionality of OS.                                                                                               |                                        |                |      |            |  |
| 4.a.                                                                                                                             | Explain the difference between External fragme                                                                     | entation and Internal fragmentation.   | 5              | CO2  | PO1        |  |
|                                                                                                                                  | How to solve the fragmentation problem using page                                                                  | ging?                                  |                |      |            |  |
|                                                                                                                                  |                                                                                                                    |                                        |                |      |            |  |

| b.   | Consider the following page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6       |   |     |     |  |  |  |
|------|---------------------------------------------------------------------------------------------|---|-----|-----|--|--|--|
|      | How many page faults would occur for an optimal and FIFO? Explain Page                      |   |     |     |  |  |  |
|      | replacement algorithm, assuming three frames and all the frames are initially empty.        |   |     |     |  |  |  |
|      | (OR)                                                                                        |   |     |     |  |  |  |
| c.   | Explain how demand paging affects the performance of a computer system?                     | 5 | CO2 | PO1 |  |  |  |
| d.   | Write in detail about Segmentation.                                                         | 5 | CO2 | PO1 |  |  |  |
| 5.a. | What is a Critical Section problem? Give the conditions that a solution to the critical     | 5 | CO3 | PO2 |  |  |  |
|      | section problem must satisfy.                                                               |   |     |     |  |  |  |
| b.   | What is Semaphore? Explain producer consumer problem using semaphore.                       | 5 | CO3 | PO1 |  |  |  |
|      | (OR)                                                                                        |   |     |     |  |  |  |
| c.   | What is Directory? Explain the operations that can be performed on a Directory.             | 5 | CO3 | PO1 |  |  |  |
| d.   | Discuss in detail about file allocation methods.                                            | 5 | CO3 | PO1 |  |  |  |
| 6.a  | Describe in detail conditions leading to Deadlocks.                                         | 5 | CO4 | PO1 |  |  |  |
| b.   | Consider the following system snapshot using data structures in the Banker's algorithm      | 5 | CO4 | PO2 |  |  |  |
|      | with resources A, B, C and D and process P0 to P4: Process Max A B C D- 6 0 1 2,1 7         |   |     |     |  |  |  |
|      | 5 0,2 3 5 6, 1 3 5 3, 13 5 6. Allocation A B C D- 1 0 0 1, 1 1 0 0, 1 2 5 4, 0 6 3 3, 1 2 1 |   |     |     |  |  |  |
|      | 2. Available A B C D- 3 2 1 1. Need A B C D. Using Banker's algorithm, answer the           |   |     |     |  |  |  |
|      | following questions: (i) How many resources of type A, B, C and D are there?                |   |     |     |  |  |  |
|      | (ii) Is the system in a safe state?                                                         |   |     |     |  |  |  |
| (OR) |                                                                                             |   |     |     |  |  |  |
| c.   | Why is deadlock state more critical than starvation? Describe resource allocation graph     | 5 | CO4 | PO1 |  |  |  |
|      | with a deadlock.                                                                            |   |     |     |  |  |  |
| d.   | How can a system recover from a deadlock? Explain.                                          | 5 | CO4 | PO1 |  |  |  |

--- End of Paper ---