.

Reg. No

QP Code: RM23BCA015

B.C.A (Second Semester) Regular Examinations, May – 2024 BCA23204 - Advanced Mathematical Computation

Time: 3hrs Maximum: 60 Marks

$(The \ figures \ in \ the \ right \ hand \ margin \ indicate \ marks)$ $PART-A$		$(2 \times 5 = 10 \text{ Marks})$		
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level
a. (Construct the Truth table $(P \lor Q) \rightarrow (P \land Q)$		CO1	K1
b. I	Find the length and magnitude of (4,8,0) and (3,2,5).		CO1	K1
c. l	Find the polar form of $1 + i$.		CO2	K2
d. I	Find the general form and a_{20} of 1,7,13,19,25,		CO2	K1
e. l	Define Graph and Subgraph.		CO1	K2
PART – B		(10 x5=50 Marks)		
Answer ALL questions		Marks	CO#	Blooms Level
2. a.	Show that $(p \rightarrow q) \lor (p \rightarrow r)$ and $p \rightarrow (q \lor r)$ logically equivalent.	5	CO3	К3
b.	Check the tautology $(p \to q) \land (q \to r) \to (p \to r)$.	5	CO3	К3
	(OR)			
c.	If $A=\{0,2,4,6,8\}$ $B=\{0,1,2,3,4\}$ $C=\{0,3,6,9\}$ $Find\ A\cup B\cup C$, $A\cap B\cap C$, $(A\cup B)\cap C$, $(A\cap B)\cup C$, $(A-B)\cup (B-A)$	6	CO4	К3
	$(A \cup B) - (A \cap B)$.			
d.	There are 11 teachers who teach Maths or Physics in a school of these 7 teach	4	CO3	K2
	only Maths and 3 teach both Maths and physics. How many teachers teach physics?			
3.a.	Find the scalar triple product and volume of the tetrahedron	6	CO3	K2
b.	[4,9,-1][2,6,0] and $[5,-4,2]$. Find the angle between the vectors \vec{a} and $\vec{b}+\vec{c}$. Where $\vec{a}=\hat{\imath}+\hat{\jmath}$,	4	CO2	K3
	$\vec{b} = 3\hat{\imath} + 2\hat{\jmath} + 3\hat{k} \text{ and } \vec{c} = \hat{\imath} + 2\hat{\jmath}.$			
	(OR)			
c.	Find the angle between two normal surfaces $x^2 + y^2 + z^2 = 10$ and	5	CO3	К3
	$x^2 + 2y^2 + 3z^2 = 15$ at point $P(2,3,4)$.			
d.	Find the directional derivative of $F=x^2+y^2+z^2$ at a point (1,1,1) in the	5	CO4	K2
	direction of \vec{a} (1,2,3).			

Express in the form of z = x + iy. i.z = $\frac{7}{7+2i}$ ii. $z = \frac{2+i}{1+i}$ iii. $(5-3i)^3$ 6 CO3 **K**3 b. Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$. 4 CO3 K2 (OR) c. If $Z_1 = 7 + 4i$ and $Z_2 = 8 - 3i$ then find $Z_1 + Z_2$, $Z_1 - Z_2$, $Z_1 \cdot Z_2$, CO₂ K3 5 $, Z_1.\overline{Z}_2$ If $z_1 = 2 + 8i$ and $z_2 = 1 - i$, then find $\left| \frac{z_1}{z_2} \right|$. 5 CO3 K3 5.a. Solve the Recurrence relation i. $a_n - 5a_{n-1} + 6a_{n-2} = 0$ CO4 K3 6 ii. $a_n - 12a_{n-1} + 36a_{n-2} = 0$ b. Solve. i. 2(x+3) - 10 = 6(32 - 3x) ii. $\frac{x-2}{5} - \frac{x-4}{2} = 2$ CO3 K3 4 (OR) c. Solve the recurrence relation $a_n=6a_{n-1}-9a_{n-2}$ $n\geq 2$, Given 5 CO3 **K**3 $a_0 = -5 \ and \ a_1 = 3$ Solve the recurrence relation $a_n - 5a_{n-1} + 7a_{n-2} = 0$ $n \ge 2$. CO4 K3 5 d. Draw the Hess 's diagram of power set of $\{a, b, c\}$. Find its maximal, Minimal 5 CO4 K2 ,greatest and lowest element. CO4 K3 5 Show that $(Z_6, +_6)$ is a Group. (OR) In a G.P series 3rd term is 24 and 6th term is 192 then find its 10th terms. 5 CO3 K4 Insert five numbers between 8 and 26 such that resulting sequence is an A.P. 5 CO4 K3

--- End of Paper ---