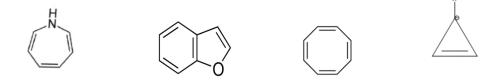
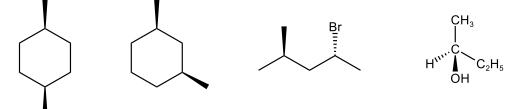

QP (Code: RM22MSC005	Reg.												AR 22
		No												
GIET UNIVERSITY, GUNUPUR – 765022														
(M. Sc. (First Semester) Examinations, March – 2023												
22CHPC101 - Organic Chemistry – I														
(Chemistry)														
Time: 3 hrs						Maximum: 70 Marks								
(The figures in the right hand margin indicate marks.) PART – A (2 x 10 = 20 Marks)								Monka)						
FA	$\mathbf{X}\mathbf{I} - \mathbf{A}$											(2 X I)	J = 20	Marks)
1. <i>I</i>	Answer all questions	5											CO#	Blooms
														Level
a.	What are cryptands	?											CO1	K1
b.			Π	//									CO1	K2
		S.	4	N.N.										
	ŏ			Ĥ.										
	What is the aromatic	city order o	f abo	ve me	ntion	organi	c com	pound	ls					
c.	Mention the importa	ance of ham	nett ec	luatio	n?								CO2	K1
d.	How taft equation o	vercomes the	he lin	nitatio	ns of l	namm	ett equ	uation	?				CO2	K1
e.	Draw the fischer pro	ojection of a	arabir	ose?									CO3	K2
f.	Acetolysis of optica mixture of cis and tr				ro-5-m	nethly	cycloh	nex-1-6	ene gi	ves ra	cemic	;	CO3	K2
g.	Predict the product.		• ב ווף										CO4	К2
0	-	0												
	О R—С—NH—OH	- ci—c	-r —	→										
	CI													
	I.													

h. Per acetic acid is used as a reagent in which reaction and give an example.i. The following biphenyls are optically active. give reason.CO3 K2

j. Which is stronger acetic acid or ethanol?


CO1

K1


PART – B

(10 x 5 = 50 Marks)

Answer ANY FIVE questions				Blooms
				Level
2. a.	Explain the resonance. Mention the conditions of resonance hybrid?	6	CO1	K1
b.	Among the following molecules which are aromatic, anti-aromatic and non-aromatic?	4	CO1	K2

3.a.	Write the fate and generation of carbonium ion?	6	CO1	K1
b.	Write in detail about inclusion compounds?	4	CO1	K1
4. a.	Discuss different types of substitution reactions with example each?	5	CO2	K1
b.	Show that hammett equation represents a linear free energy relationship?	5	CO2	K2
5.a.	Discuss the thermodynamic requirements for a reaction?	6	CO2	K1
b.	Explain Curtin-Hammett principle?	4	CO2	K1
6. a.	Give a brief account of conformational analysis of cyclohexane-1,3-diol?	6	CO3	K2
b.	Which molecules are optically active from the below and why?	4	CO3	K2

7.a.	Write notes on Asymmetric synthesis?			K1
b.	Explain why trans decalin is more stable than cis decalin?	4	CO3	K2
8. a.	Write a short note on name reaction			K 1
	i. Sommelet –Hauser rearrangement Smiles Rearrangement			
b.	Explain Backmann Rearrangement with mechanism and applications.	6	CO4	K1
	End of Paper			

Page **2** of **2**