QP	Code: RM22MSC007 Reg. No		I	AR 22
Tim	GIET UNIVERSITY, GUNUPUR – 765 M. Sc. (First Semester) Examinations, March – 22MTPC101 - Abstract Algebra (Mathematics)		m: 70 I	Marks
DAI	(The figures in the right hand margin indicate marks.)	() 10	20 14	(ambra)
PAI	RT – A	$(2 \times 10 =$	= 20 M	arks)
Q. 1. A	Answer ALL questions		CO#	Blooms Level
a.	Let $G = \{1, \omega, \omega^2\}$ is a group. Find the order of each element of the group.		1	K2
b.	Create a subgroup from the set $G = \{1, -1, i, -i\}$.		1	K2
c.	Let <i>G</i> be the group of positive real numbers under multiplication and \overline{G} be the gro all real number under addition. A mapping $\phi: G \to \overline{G}$ is defined by $\phi(x) = \log_{10} x$ $x \in G$. Then show that ϕ is a homomorphism.	-	1	К2
d.	Is the set of integers is a cyclic group w.r.t addition? If yes then find its generator.		1	K 1
e.	Is the set $\{(1,1,0), (1,0,1), (0,1,1)\}$, a basis for V_3 ?		3	K2
f.	What is Unique Factorization Domain?		3	K1
g.	Define Einstein Criterion.		3	K1
h.	Write an example for field with proper explanation.		2	K1
i.	What is the difference between algebraic number and algebraic extension? Give an example.	L	4	K2
j.	What do you mean by extension field? Justify your answer with an example.		4	K2
PAI	PART – B (10 x		= 50 Marks)	
Answ	er ANY FIVE questions	Marks	CO #	Blooms Level
2. a.	Let ϕ be a homomorphism of G onto \overline{G} with kernel K . Then $\frac{G}{K} \approx \overline{G}$.	10	1	K2
3.a.	Show that $G = \{1,3,5,7\}$ is a group under multiplication modulo 8.	5	1	K2
b.	If G is a group, such that $(a, b)^2 = a^2 \cdot b^2$ for all $a, b \in G$. Show that G must be abelian.	5	1	K2
4. a.	Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then R is a field.	10	2	K2
5.a.	Prove that normalizer of a in G, defined by $N(a)$ is a subgroup of G.	6	2	K2
b.	If R is a ring, then for all $a, b \in \mathbb{R}$ show that, $a(-b) = (-a)b = -(ab)$.	4	2	K2
6. a.	If U and W are two subspaces of a vector space V, prove that U and $U + W = U$ iff $U \subset W$.	6	3	K2
b.	Let V be any vector space. Then the set $\{v\}$ is linearly dependent L.D. iff $v = \vec{0}$.	4	3	K1
7.a.	In an n -dimensional vector space V , any set of n linearly independent vectors is a basis.	5	3	K2
b.	If S is a non-empty subset of a vector space V. Prove that $[S]$, is the intersection of all subspaces of V containing S.	5	3	K2
8. a.	Let $K F$ be any field extension. Then, $a \in K$ is algebraic over F if and only if $[F(a):F]$ is finite, i.e. $F(a)$ is a finite extension over F . Moreover $[F(a):F] = n$, when n is the degree of minimal polynomial of a over F .	10	4	K2