Reg.					
No					

M. Sc. (CUNIVERSITY, GUNUPUR – 76 (First Semester) Examinations, March (C104 – Bioinformatics and Biostation) (Life science)	- 2023			
Time: 3 hrs	(Life science)	Maximum: 70 Marks (2 x 10 = 20 Marks)			
(The figures in the PART – A	right hand margin indicate marks.)				
1. Answer all questions		CO #	Blooms Level		
a. What is the flat file? Write four examples	s of sequence flat file format.	CO1-PO1	Kı		
b. What is PDBID? Give two examples		CO ₁ -PO ₁	K1		
c. Write the difference between the Needler Waterman algorithm	nan-Wunch algorithm and the Smith-	CO1-PO1	K ₁		
d. Justify the given MSA is a P-fam		CO_2 - PO_1	K1		
QPILLL					
LR-LL-					
K-ILLL					
PPVLIL					
Assume that match= 1,Mismatch= -1 and	d gap= -1				
e. If there are 5 OTU in an MSA how many are constructed	v rooted and unrooted phylogenetic tree	CO ₂ -PO ₁	K ₂		
f. Convert the given molecular marker into	MSA	CO_2 - PO_2	K ₁		
TCYGIFVL					
TCGIFVL					
SCYGIFVLSG					
ACGIFVLSG					
g. Find the Hamming distance between two	sequence	CO ₃ -PO ₂	K ₂		
ADVANCED and NEWDELHI	-				
n. Find the mean and mode of the following	g data	CO ₃ -PO ₁	K1		
3,5,7,2,5,1,3,5					
i. What is the difference between negative	and positive correlations?	CO ₃ -PO ₁	K ₁		
j. Write the equation of regression X on Y	and Y on X	CO_3 - PO_1	K ₂		

PART - B

(10 x 5 = 50 Marks)

AR 22

Answ	er ANY FIVE questions	Marks	CO#	Blooms						
				Level						
2. a.	Explain briefly on Genbank database	5	CO_1 - PO_1	\mathbf{K}_1						
b.	State the difference between global and local alignment	5	CO_1 - PO_1	K_1						
3.a.	Find the optimal alignment and alignment score of two sequences	7	CO ₁ -PO ₁	K_2						
	AATTCGCGTA and TATCGCTACA by using dot matrix algorithm									

b.	Explain the option of BLAST										CO ₁ -PO ₁	\mathbf{K}_1
4. a.											CO ₂ -PO ₂	K_2
	ACGCTAFKI											
	GCGCTAFKI											
	SCGCTAFKL											
	GCGCTGFKI											
	GCGCTLFKI											
	ASGCTAFKL											
	ACACTAF	KL										
b.	Find the h	amming	distan	ce betwee	n the	seque	nce Hl	LIKI	LAAIWL and	3	CO ₂ -PO ₂	\mathbf{K}_1
	HLWKLAAIWA. Write the difference between hamming distance and Edit											
	distance.											
5.a.		•		-					ndary structure	5	CO ₂ -PO ₂	K_2
	information if a protein containing a total of 1800 residues and 810 of them are											
	in helix, con	ē			0							
b.	-	•	0		-		-		procedure for	5	CO ₃ -PO ₁	K2
	homology modelling by swiss model. How it is differ from threading modelling									7		
6. a.	Design a phylogenetic tree by using NJ Method										CO ₃ -PO ₁	K_2
	A B C D E F											
	A 0											
	B 5 0 C 4 7 0											
	D 7 10 7 0 E 6 9 6 5 0											
	F 8 11 8 9											
b.												\mathbf{K}_1
7.a.										3 5		\mathbf{K}_1
	6, 15, 4, 10,									-		
1				1	6.1	1				-	CO. DO.	V.
b.	Calculate the	1	-					C	TT	5	CO ₃ -PO ₁	K2
	Case X-1	A 10	B 6	C 9	D 10	E 12	F 13	G 11	H 8			
	X-1 X-2	9	4	6	10	12	13	9	4			
8. a.	4. Calculate the mean deviation from mean for the following distribution.									5	CO ₃ -PO ₁	K_2
	Χ	1	3	8	5		6	7				
	F	4	9	16	9		11	6				
b.	Find the lines of regression X on Y and Yon X									5	CO ₃ -PO ₂	\mathbf{K}_2
	Х	X 3 5 6 6 9										
	Y	Y 2 3 4 6 5										

--- End of Paper ---