QP Code: RM22MSC025	Reg. No				

AR 21

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (First Semester) Examinations, March – 2023

22CHPC103 - Physical Chemistry – I

(Chemistry)

Tin	Time: 3 hrs		Maximum: 70 Marks			
	(The figures in the right hand margin indicate marks.) PART – A	(2 x 10 =	= 20 M	arks)		
Q.1.	Answer ALL Questions	Marks	CO#	Blooms Level		
a.	What is point groups symmetry of H ₃ PO ₄ with and without lone pairs.	2	CO1	K2		
b.	Define components and determine the number of components for the following system:	2	CO2	K2		
	$NH_4Cl(S) \longrightarrow NH_3(g) + HCl(g)$					
c.	Calculate the degeneracy of particle in 2D box.	2	CO3	K2		
d.	What are the different parts of function?	2	CO4	K2		
e.	The point group symmetry of the given structure:	2	CO1	K2		
f.	Define triple point and critical point.	2	CO2	K2		
g.	Using Laplecian operator find the Eigen value of Cos ax.Cos by.Cos cz	2	CO3	K2		
h.	Define array with declaration.	2	CO4	K2		
i.	The product of $(C_2^x . \sigma xy)$ and $(\sigma xy. S_4^z)$ is;	2	CO1	K2		
j.	The value of commutator $[x,[x,Px]]$ is equal to:	2	CO3	K2		
P	ART – B	$(10 \times 5 =$	50 Ma	rks)		
Answ	ver ANY FIVE questions	Marks	СО#	Blooms Level		
2. a.	Represent the Group multiplication table of H ₂ O & NH ₃ molecule.	7	CO1			
b.	Define Plane of symmetry and its types with examples.	3	CO1	K3		
3.	State the phase rule with different case studies.	10	CO2	K4		
4.	The probability of finding a free particle inside the left half of 1D box in between $L/4$ to $3L/4$	10	CO3	K4		
5.a.	Programme for Computer Pressure from Vander Waal's Equation.	10	CO4	K4		
	$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$					
6. a.	Consider the pyridine molecule and find its normal modes of vibration and classify them as IR active, Raman active, IR and Raman both active.	7	CO1	K4		
b.	Character table of point group D_8 is given below: Calculate the value of $a+b+c+d+e+f+g+h+i+j+k=?$	3	CO1	K2		

D_8	Е	2C ₈	2C ₄	$2C_8^3$	C_2	4C2'	4C ₂ "
A_1	a	1	1	1	1	1	1
A_2	b	1	1	1	1	h	i
\mathbf{B}_1	c	-1	1	-1	1	1	j
B_2	d	-1	1	-1	1	-1	1
E_1	e	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0
E ₂	f	0	-2	0	k	0	0
E_3	g	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0

- 7.a. Calculate the delocalisation energy of cyclopropene cation and anion.
- 7 CO3 K4

b. Calculate the delocalisation energy of cyclobutadiene system.

3 CO3 K3

CO2 K4

8. Discuss Clausius-Claperon equation and explain effect of pressure on the melting point of ice.

--- End of Paper ---